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FOREWORD

This report is submitted under the terms of contract NAS 9-2803 which

was awarded to Geonautics, Incorporated on May 1, 1964. Purpose of the

study is to determine selenodetic measurements and experiments to be

performed during the early lunar surface Apollo missions.

The study was conducted under cognizance of the Lunar Surface Technology

Branch, Advanced Spacecraft Technology Division of the Manned Spacecraft

Center. Mr. James Sasser was Technical Representative of MSC and main-

tained close liaison with Geonautics' staff during the period of the study and

provided technical data and direction. He and Mr. John Dornbach periodically

reviewed program progress, and their cooperation and assistance throughout

the study were most helpful. Members of Geonautics' staff primarily en-

gaged in the study, and the areas of their contributions, are listed in the

Introduction.
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ABS TRAC T

Purpose of this study has been to investigate and recommend types of

measurements and experiments during early Apollo missions to {i) refine

present estimates of size and shape of the moon, {ii} establish a seleno-

detic datum and the beginnings of a selenodetic controi network, and

(iii) establish horizontaI and verticaI control for improved lunar mapping.

To accomplish these purposes, measurements were investigated that could

be obtained from lunar surface survey operations, from maximum utiIiza-

tion of Lunar Orbiter photography, and from observations using on-board

equipment of the CSM, actually, the space sextant. Theory, equipment,

operational methodology, and data reduction procedures applicable to

these techniques and their objectives are set forth, along with estimated

accuracies of resuIts.

A long range view was taken in the study in that some procedures are

recommended which will result in immediate benefits to selenodesy, others

are recommended which will become significant only with repeated landings

and more extended coverage than can be provided during the initial missions,

and some are recommended because they will provide the ground work and

experience for learning what can or should be done during extended missions.

In all aspects of the study, full consideration was given to the astronaut's

capabilities and his presence on the lunar surface or in the CSM, and only

measurements are recommended which can be done better and more accur-

ately because of his presence.

iii
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SEL ENODE TIC MEASUREMEN TS

FOR

EARLY APOLLO MISSIONS

SECTION I

IN TRODUC TION

A. PURPOSE AND SCOPE

The Apollo missions constitute an important step in the conquest of

space leading to the potential of visiting other planets in the solar system.

In the first manned explorations of the moon, it is desired to obtain scien-

tific data that cannot be obtained, at least to the same degree of certainty,

by earth-based observations or by unmanned equipment on the surface of

the moon or in orbit around it; and to accomplish measures that will pave

the way for more extensive investigations in the future.

Selenodesy, the lunar counterpart of geodesy, encompasses both these

aspects. In the broader sense, it is the study of the size and shape of the

moon, its gravity field and hence something of its internal structure and

density distribution, which are matters of great interest in determining the

origin, history, and internal structure of the moon. In addition, selenodesy

involves large-scale mapping of the moon, including the precise positioning

of identifiable points on its surface in a well-defined coordinate system.

Mapping is essential to the planning and execution of landing missions and

to later more extensive exploration.

It has thus been the purpose of this study to investigate and recommend

types of measurements, either on the lunar surface or from an orbiting

spacecraft, with the objective of:

1. Refining present estimates of size and shape of the moon

which, when combined with gravitational data, will tell

something about the internal structure of the moon.

!



_o Establishing a selenodetic datum, and the beginnings

of a selenodetic control network that may be required

to support future lunar operations.

3. Establishing horizontal and vertical control for improved

lunar mapping, consistent with requirements and standards

of mapping techniques planned during the time of the Apollo

missions and a reasonable period thereafter.

Equipment, operational methodology, and data reduction procedures

for accomplishment of (1), (Z), and (3) above are included in the investi-

gations.

While the greatest possible precision is desired in selenodetic measure-

ments, it is noted that high-order accuracies as defined for surveys on

earth probably cannot be attained, at least not during the Apollo mission

phase. Anticipated environmental conditions will be severe at best, and

it is unlikely that the standards of work on earth, which are realized only

with difficulty under optimum conditions, can be matched. Also, unless

there were at least three stations in a net occupied at one time or another

by instruments, there would be no closing errors in either angle or dis-

placement, and thus no way to estimate the internal precision of a survey

according to terrestrial standards. It seems doubtful that as many as

three intervisible stations could be established during the Apollo missions,

unless so close together as to nullify their usefulness.

Therefore, MSC requested that this study investigate and consider all

even remotely reasonable methods for achieving objectives outlined above

to the best possible accuracy, even if such accuracy is low, as long as it

represents a worthwhile improvement over, or a contribution to seleno-

detic knowledge at time of the missions.

Three general categories of measurements have been investigated in

detail; those obtainable from:
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i. Ground survey operations.

2. Lunar Orbiter photography.

3. Space sextant sightings of selected landmarks from

the CSM

B. SUPPORT OF MAPPING PROGRA/VIS

In reviewing the total usefulness of possible selenodetic programs, it

became apparent that their greatest value will probably come from the

support they give to lunar mapping programs. Various projects are under

way and will continue at the Army Map Service, Aeronautical Chart and

Information Center, and U. S. Geological Survey for mapping of the moon,

at ever larger scales. This is being accomplished by earth-based observa-

tions, yielding maps as large as 1:500,000 scale, which over a period of

many years to come will be filled in with larger scale mapping derived

from photography obtained by lunar orbiting vehicles. Construction of

these maps would be simplified and their utility enhanced for scientific

purposes, and for navigation and planning of lunar missions, by establish-

ment of accurate control points properly identified on the lunar surface to

which photography and cartography can be fitted. In executing this study,

primary attention was given to this purpose.

C. GUIDES AND CONSTRAINTS

I. Mission Constraints

The initial mission profile has been assumed to provide three excur-

sions from the LEM by one astronaut at a time lasting 96, 154 and 13Z

minutes respectively, spread over a period of 15 hours and 5 minutes,

this period representing the maximum span between observations. It

has also been assumed that the time between separation and rendezvous

maneuvers would be approximately Z4 hours, during which period the

third astronaut in the CSM would be able to make observations therefrom.



Present plans call for three similar Apollo missions, with subsequent

missions providing longer times on the lunar surface and in orbit. We

have concluded that the nature of the selenodetic work would not change

appreciably from one mission to the next. We have provided, however,

for measurements that would be useful under both extremes of assump-

tions; namely (1) that each mission would land in a different region of

the moon, and repetition of the same type measurements on each mission

would provide a foundation for wide-area coverage, some redundancy for

increased accuracies, and a basis for time sequences where these greatly

enhance the scientific value of the results (e. g. , motion of the lunar ce-

lestial pole); (Z) the selenodetic operation is carried out only once, at

one landing site.

It was further assumed that the maximum instrument payload is Z50

pounds with a bulk of i0 cubic feet, but that this payload is for all scientific

purposes; so efforts were made to keep the equipment required for seleno-

detic purposes to a fraction of this total.

Other significant limitations on the achievable scope and accuracy of

selenodetic surveys are imposed by the restricted mobility and dexterity

of the astronauts, closeness of the visible horizon, shortness of any pos-

sible base for resection work, possible lack of sharply defined terrain

objects as control points, and extreme difficulty of ranging to distant

natural objects that will appear above and beyond the horizon. In order

to determine practicable methods of accomplishing the work outlined,

study was made of a broad range of such known and assumed environ-

mental factors and constraints based on recent literature and Apollo

project studies. These are summarized below:

2. Environmental Constraints

(a) Landing Site and Nearness of the Horizon. Landing will presum-

ably be in a generally flat area, with a horizon distance of about 2.5 km

from an astronaut's height of eye and about 5 km from the top of the LEM.
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This limits the area of surface operations to not more than Z0-80 km Z,

except possibly for higher features whose base is beyond and below the

visible (near) horizon.

(b) Space Suit Impediments. Because of these impediments, it has

been considered that requirements for digital dexterity or exacting ocular

work must be kept to an absolute minimum. Precise instrument pointing

or circle reading and complicated manipulations have been avoided.

(c) Lunar Surface. The character of the ground, its bearing strength,

and the presence or absence of loose dust, perhaps electrostatically charged,

are presently unknown factors. Possible answers to these questions are

covered in other studies /1, Z] andwill not be repeated here. These im-

ponderables together with space suit impediments, etc. , have indicated

that demands on the astronaut to move around must be kept to an absolute

minimum, so selenodetic operations have been designed primarily for

execution from the CSM and the LEM. Under this heading it should also

be pointed out that the probable scarcity of sharply defined terrain ob-

jects which would constitute natural targets within the astronaut's range

of observations has been taken into account; and that although mountains

or highlands may appear at a distance beyond the horizon, they probably

cannot be accurately located by operations from the neighborhood of the

LEM alone.

(d) Atmosphere. The absence of atmosphere will eliminate refraction,

scintillation, extinction of star light, air glow, scattered background light,

and of course, weather, thus favoring photography of distant terrain, star

background, etc., and completely eliminating the need to correct for or

avoid refraction errors that are typical of terrestrial observations. This

fact allows a much freer handling of vertical or oblique angles than is

possible on the earth.

(e) Radiations. Energetic particle radiation is not considered a

serious danger in view of the possibility of receiving warnings in



time to abort in the event of a strong solar flare. Survey instruments,

except camera films, will not be affected adversely. Radiation-resistant

films are available and light-weight shielding of cameras appears practic-

able. The intense solar thermal radiation will require reflectorized

packaging of cameras and some thermal insulation. Cameras on ground

supports will require protection from heat conduction from the ground,

which may reach temperatures of 360°K during the planned operation.

Temperatures of solid state devices would have to be controlled somewhat.

Meteoritic impacts will constitute a negligible danger, or at least no more

of a danger than to any of the other operations (including of course injury

to the astronaut himself).

(f) Photometric Conditions. Lunar surface photometric conditions have

been extensively examined [ 3, 4, 5 ] to determine that the terrain photog-

raphy described in the study is practicable, and it appears that such photog-

raphy is certainly possible, in spite of the singular properties of ground

reflectance and luminescence. Moreover, experience of the Ranger

photographic mission confirms that shadow effects and the varied luminance

of ground slopes permit excellent results. The questions of photographic

identification of natural terrain features with a low albedo contrast and

color differentiation have also been considered. Application of Fedorets'

photometric function studies and other analyses indicate that luminances of

the terrain feature facets vary moderately but not strongly [ 4, 5 ]. There

will be low contrast among sun-lit features looking in the direction away from

the sun; the sun-lit horizons showing against a black sky and the shiny

surfaces of survey targets (suggested below) will stand forth brilliantly.

(g) Gravity. The low value of the acceleration of lunar gravity, about
Z

164 cm/sec is presumed to favor astronaut mobility and the handling of

equipment. It will also obviate some difficulties with the flexure of

instruments. There appears no reason to doubt that it can readily be

sensed by plumb lines or level bubbles, although the time required to reach

equilibrium will be longer.
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(h) Lunar Rotation. The slow lunar rotation favors the use of a fixed

camera mount to take trailed star photographs, i.e., eliminates the neces-

sity ox using an equatorial mount. Other things being equal, for a given

exposure, star trails will be only 1/Z7.5 as long as for a terrestrial photo-

graph (hence more point-like}, and the limit of photographable faint stars

will be extended 3 1/Z stellar magnitudes from this cause along. Photo-

graphs of a rapidly moving Orbiter or the CSM will require a shutter. The

slow lunar rotation also causes the timing of astronomic camera observa-

tions to be less critical than on earth, except in the case of exposures

involving orbiting spacecraft.

D. DIRECTION OF THE STUDY

Under direction of Mr. Bernard A. Claveloux, Senior Engineer, who

monitored and participated in all phases, the study was broken down into

four areas of investigations as follows:

1. Lunar Surface Measurements

Under the direction of H. MacDonald Harper, Geodetic Engineer, a

team comprised of Thorsten L. Gunther, Geodetic Engineer, Carl I.

Aslakson, USC&GS (ret. } and Floyd W. Hough, Geodesists, a broad

range of measurements was investigated, including some 7Z techniques

and methods for achieving them. Trade-offs were made in the light of

mission constraints and selenodetic value of the measurements, with

the result that only six techniques and the resulting measurements were

selected as comprising a workable system of substantial value.

Z. Use of On-Board CSM Equipment for Selenodetic Measurements

With mathematical analysis and advice supplied by Dr. Edward R. Dyer,

Jr., applied Mathematician and Astronomer, a team composed of Dr. Alan

D. Morris, Physicist and James S. Reece, Mathematician, examined the

possible use of the optical alignment telescope, landing radar, scanning

7



telescope and space sextant as means of obtaining selenodetic measurements,

and considered the types of measurements that might usefully be made from

the CSM. Proposals to include substantial new equipment for selenodetic

data, such as stereographic cameras and long-range ranging devices, al-

though attractive, were ruled out of consideration by the ground rules of the

study. As a result, all possibilities were eliminated except use of the SXT

which, with what appears to be minor modifications, offers exceedingly at-

tractive possibilities. A complete system and operational method for the

use of the SXT was derived by this group.

3. Analysis of Orbiter Photographic Coverage

This phase was handled exhaustively by Dr. Heinrich K. Eichhorn-

yon Wurmb, with some assistance from Dr. Dyer, in order that a thorough

understanding and appreciation could be gained of the quality of lunar

mapping which will be obtainable from the presently planned programs.

These results were coordinated with the other study groups in order that

all measurements recommended could be mutually supplemental and

beneficial.

4. Environmental Factors and Review of Available Equipments

Under the direction of Elliott B. Roberts, Captain USC&GS (ret.)

an investigation was made of environmental and mission constraints and

their effects on selenodetic operations. Terrestrial surveying techniques

and equipment that might conceivably be applicable to the lunar missions

were thoroughly reviewed by this group, as were techniques and ac-

curacies of earth-based lunar mapping programs under way at various

government agencies.

In addition to the foregoing, contributions were made by Robert K. Salin,

navigational systems, Edwin G. Collen, Optical-Mechanical Engineer, Henri

A. Richardson, Mathematician, and George T. Bell who directed the prepara-

tions of and edited the final report. There was substantial contribution

and back-up to this study from output of the Pilotage Navigation Study

8
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(Contract No. NAS 9-3006), especially on the subjects of mission profile,

astronaut duties, use of on-board equipment, and human factors elements.

It also instilled an appreciation of the value of improved maps for navi-

gation and landing purposes, and probably increased the rating of the

value of SXT observations that might be made in connection with seleno-

detic endeavors.

Although studies proceeded along the four lines and groupings outlined

above, all personnel worked closely together in order to arrive at a total

interrelated selenodetic scheme which will provide immediate utility to

man's exploration of the moon, and form the basis for future expansion

of desirable surveys.

E. VALUE OF MAN IN THE OPERATIONS

In all studies undertaken, full consideration was given to the astro-

nauts' capabilities and his presence on the lunar surface or in the CSM.

It goes without saying that man has unique ability to recognize and identify

objects in the objective world, make value judgments about what is im-

portant and what is irrelevant detail in a particular situation, and make

decisions on choices between several possible courses of action. The

most efficient system is one of man-plus-machine or instruments, in

which the foregoing functions are assumed by the man. It is, of course,

conceivable that an automated instrumental system can be devised, placed

in an appropriate location, and instructed simply to collect all data of

certain types, the types being made inclusive enough to avoid missing

any data of importance. _ The result is that the system amasses great

quantities of detailed data, mostly superfluous, which still must be

presented to a man for evaluation, selection, and interpretation. A

system whereby these functions can be exercised during the data col-

lection process itself is greatly to be preferred. Recommendations of

this study are based upon utilizing the astronauts t identification, selec-

tion and judgment capabilities, with instruments utilized to measure

and record.



SEC TION II

REPORT SUMMARY AND RECOMMENDATIONS

A. RECOMMENDED MEASUREMENTS

I. Basis of Recommendations

In reviewing possible measurements or experiments in order to select

those that will produce the most important results per unit of time and effort,

attention was directed to the following factors: (I) provision of an adequate

number, selenographic distribution, and accuracy of control points over the

largest possible part of the moon's surface accessible to coverage by Apollo

and lunar Orbiter missions, necessary to tie the area together in some

single coordinate system; (2) provision of an adequate number of control

points to carry out reliable transfers between the several coordinate sys-

tems, in particular the following four systems or sets of systems: (a) the

system of current lunar maps (actually several different subsystems, as

derived by different research agencies); (b) a barycentric coordinate system

describing the position of a circumlunar vehicle with respect to the moon's

center of mass, and derived ultimately from terrestrial tracking data

(actually also several subsystems, one for each of the circumlunar vehicles);

(c) the system attached to a photographic survey carried out by a lunar

Orbiter, which will resemble systems of type (a) or type (b) in varying de-

grees, depending on what controls are applied to the photogrammetric

reductions; and (d) an ideal selenodetic system, with the axis of symmetry

aligned with the mean axis of rotation of the moon as embedded in the physi-

cal body of the moon, with the correct value of the radius from the moon's

center of mass to a datum point on the surface, and the other parameters

that make up a complete selenodetic datum. (See Section III)

Parameters to describe the departures of the moon's gravitational field

from spherical symmetry or, what amounts to the same thing, departures

from spherical symmetry of an equipotential surface approximating the real

surface, should some day be determined and added to make up a complete

datum, although these steps are beyond the scope of anything that can be
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accomplished during the Apollo missions, except possibly by refined treat-

ment of the terrestrial tracking data. This is a good example of the kind of

information which is required for a complete selenodetic description, but

which is inaccessible to Apollo operations, and serves to exemplify the

fact that in the current study we have tried to take a long-range view. This

view has influenced what is included in the recommendation in the following

respects: (1) None of the procedures recommended is a blind alley; that

is, none of them represents work that would later have to be undone. (Z)

Some procedures are recommended which cannot be expected to yield im-

portant results on a single landing, but which will come into their own with

repeated landings and extended coverage: astronomical position determina-

tions and surface gravity measurements are good examples of such results.

(3) Some activities and techniques are recommended, not so much be-

cause of what they are expected to accomplish during the first several

Apollo landings, but because they will provide the groundwork and experi-

ence for learning exactly what can or should be done in the long run: local

surveying techniques fall into this category.

Recommended measurements comprise the following:

Z. Lunar Surface Measurements

(a) Determination of more exact terrestrial ri6ht ascension and de-

clination of the lunar celestial pole, both instantaneous and as they vary

I

I
!

!
I

I

with time. A knowledge of the direction Of the moon's axis of rotation in

celestial coordinates would lay the foundation for astronomical selenodesy

(analogous to its terrestrial counterpart}. It would simplify the later de-

termination of astronomical coordinates for any point on the moon's surface

(see (b) below} and make possible eventual determinations of deflections of

the vertical, and the geophysical information about detailed internal mass

distribution that the deflections reveal. It would make possible a determina-

tion of the wandering of the lunar pole, which would also yield geophysical

information about the mass and internal rigidity of the moon. Variation

with time of the lunar celestial poles would be a direct measure of the

physical librations, which are a function of the generalized large-scale

11
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mass distribution in the moon. (Obtaining a sufficiently dense time sequence

of such observations for this purpose will probably be difficult, and the ob-

servation from earth of beacons emplanted on the moon may be more effec-

tive -- see (d) below.)

Coordinates for lunar navigation would incidentally be improved, but

in no very significant way, since the error arising from the present un-

certainty of 0.01 ° or so in the location of the lunar celestial pole contributes

only 300 m to an error of an astronomical fix on the surface, and contributes

nothing to the error of relative position of two fixes. This matter is men-

tioned again under (b) (iii)below.

(b) Observation of the astronomical position and a reference azimuth

at the landing site. This observation would accomplish the following

inwhole or in part: (i) it would furnish an improved zero-point datum for a

system of selenocentric latitudes and longitudes for any selenocentric sys-

tem, i.e. , one that is a better fit to the moon's real axis of rotation; (if)

other sites can be occupied later and tied to the first site so that intercom-

parison between astronomic positions and selenodetic position will give

deflection of the vertical and hence information on mass distribution; and

(iii) even if subsequent sites are not tied to the first site by a common

selenodetic net, it would be useful to have astronomic fixes at all sites in

order to establish the relative positions of any two sites with an uncertainty

no greater than the combined uncertainty of the astronomic fixes at the

two sites, plus the (unknown) differences of the deflection of the vertical

at the sites.

(c) Photography of the CSM against the star background. This photo-

graphy will complement observations made with the SXT aboard the CSM

to determine the position of the landing site in the barycentric coordinates

system of the CSM, and will be useful in making transfers between the bary-

centric system, the system of existing lunar maps, the local survey system,

and the eventual selenodetic system (including the selenocentric astronomi-

cal system). IfSXT observations from the CSM are unsuccessful or in-

feasible, observations of the CSM from the surface become essential, for

12
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they would provide the only link between the barycentric system and the

others.

(d) Emplacement of a beacon to be observed from the earth. Observa-

tion of the location of beacon from the earth and the motion of the beacon

with respect to the moon's center of mass would aid in determining the

physical librations of the moon better than they are known at present. In

addition, coordinates of the beacon in terrestrial tracking coordinates

could be used as a datum tie between terrestrial tracking coordinates (and

hence barycentric CSM coordinates) and coordinates referred to a lunar

surface datum.

There is some question whether the beacon should be an optical beacon

(probably a mirror or corner reflector for a laser beam) or a radio beacon.

The advantage of an optical beacon is that it provides a point that can be

observed precisely in at least two degrees of freedom (transverse to the

line of sight) -- three if ranging with a laser is possible -- and would be

most useful near the center of the moon's visible hemisphere. By con-

trast, a radio beacon provides information only in one degree of freedom

(along the line of sight), and is truly useful for librations only near the

limb. On the other hand, a radio beacon can be observed an__mytime it is

above the terrestrial horizon of the tracking station, while a laser reflec-

tor requires a powerful cooperating terrestrial laser with a clear sky above

it, and the geometry of the reflection of sunlight from a mirror limits its

observability still further, unless one goes to a mirror size unmanageably

large for the Apollo missions. Decision on the type of beacon is reserved

until more is known about probable technological advances during the next

several years.

(e) Gravity observations. Gravity observations will undoubtedly be made

in connection with the geological and geophysical efforts, and they also will

be useful in the long run for higher precision mapping, i.e., in combination

with measurements of deflections of the vertical, or to predict the deflec-

tion at untied points. Even though such deflections will not be of practical

selenodetic value until large area surveys are under way, measuring the

13



moon's acceleration of gravity at even a single point on the moon surface

will be useful either (i) to obtain a value for the moon's radius independent

of other methods of measurement; or (ii) to obtain a sample of the lunar

gravity anomaly which (if it is very different from zero) would suggest the

order of magnitude of other anomalies to be expected, and perhaps pro-

vide a guide for future surveys. (To obtain (i), (ii) must be assumed, and

vice versa. )

(f) Establishment of horizontal and vertical control in the vicinity of

the LEM. If the top of the LEM can be used as an observation post (and

assuming there are no measurable landmark features appearing above the

horizon), visibility will be limited by the curvature of the moon's surface

to approximately 5 km, so that any control network will cover about 80 km 2.

If observations must be made from the ground, visibility will be about

2. 5 km resulting in an average visibility of approximately 20 km 2. In the

fortunate circumstance that identifiable distant features can be observed

and measured, the controlled area will be considerably larger, but the

accuracy of control will deteriorate because of either too short a baseline

or the difficulty of ranging to more distant landmarks. In any event, a

control network consisting of directions (two angles, referred to a de-

finite coordinate system, e.g. , the stars) and ranges from the LEM to

identifiable landmarks (or artificial reflectors) would be valuable to:

(i) provide a local reference system for detailed mapping of the landing

area which may be accomplished in connection with geophysical and geo-

logical exploration; (ii) provide accurate control for lunar Orbiter or other

photography which may cover the landing area; (iii) provide ties between

a provisional selenodetic datum, including the astronomic coordinates ob-

tained in (b) above, and existing maps; and (iv) constitute a practical ex-

periment to determine the problems and practicalities in performing

selenodetic surveys during future missions.

Suggested means of supplying control with a precision of _ 1:5000

include the use of a panoramic camera, and laser ranging to artificial

targets. Control to an accuracy of _ 1:2500 can be accomplished by

establishment of a short base, or by photographic stadiametric methods.
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As more landings are made and the range of exploration around the

landing areas becomes greater, the coverage, accuracy and value of such

networks will be increased. In fact, one of the most important consequences

of the surface operations during the initial landing may be the development

and refinement of selenodetic techniques in order that full advantage can

be taken of later extended missions.

3. Use of Equipment On-Board CSM for Selenodetic Purposes

Analysis of results which may be achieved by lunar Orbiter photography

of the type presently planned, indicates that it should provide map coverage

of a number of 200 krn x 200 km squares within which precisely identifiable

landmark features will have a relative accuracy of + 65 meters and which

can be tied to the map system of control points with an error of + 30-250

meters, depending upon accuracies and numbers of control points available.

To approach the high precision end of this range of uncertainty, it will be

necessary to provide I00 control points (landmarks with known coordinates)

having an accuracy somewhere around + 200 meters in the desired coordi-

nate system. The most optimistic projections of NASA-MSC, however,

predict about 40-50 control points within a map square with an accuracy of

Jr 200 meters at the center area of the visible face of the moon, degrading

to approximately +__i000 meters toward the limb. This deficiency of con-

trol points in accuracy and distribution limits the utility of lunar Orbiter

photographic missions, and the accuracy of maps resulting therefrom or

from earth-based observations. It is recommended, therefore, that:

(a) SXT observations be made from the CSM of selected landmark

features. As described in body of the report, a minor modification to the

SXT (consisting of making the attenuating neutral filter in the fixed line of

sight interchangeable to the movable line of sight), and the addition of a

small removable photographic recording camera that can be fastened to

the SXT at the eyepiece crook, will permit observation and recording of

the positions of from _ 50 to _ 200 landmarks, depending upon the desired

accuracy of the fixes, distances of the landmarks from the subsatellite

15



track, and the astronauts' duty schedule. (See Section XI. ) The landmark

positions could range from close to the subsatellite track out to _ 600 km

each side of the track, and could have an accuracy for each degree of freedom

of approximately + 15 m per single complete observation (close to the track)

to several time this amount (far from the track). This is the uncertainty of

the position with respect to the CSM. If the error of the CSM position with

respect to the moon's center of mass is 50 m, the total resultant error of

landmark location would be 50-100 m. If the CSM error is as large as

Z00 m, the total landmark location error would be little larger than 200 m.

(see Section III.) These points would thus have an accuracy better than could

be obtained by earth-based methods, and would represent a substantial con-

tribution to the control of lunar mapping done by Orbiters or otherwise.

(Terrestrial tracking of lunar surface beacons could provide slightly better

accuracy, but emplacement of a commensurate number of beacons similar-

ly distributed is not feasible. ) They could also provide navigation references

outside Orbiter coverage.

(b) Carryin_ out the same SXT measurements visually rather than

photographically, if photography proves infeasible. If the SXT cannot be

modified and the camera added, the same angle measurements (but a smaller

number) can be made by the astronaut visually and recorded; however, re-

sulting errors will be an order of magnitude larger, ranging from + 150

meters for landmarks close to the subsatellite track, to perhaps 1 km for

landmarks on the skyline, all with respect to a mean barycentric CSM posi-

tion. The total error in barycentric coordinates would thus be approximately

+ 160 meters for close landmarks, increasing to about 1 km at extreme range.

Inasmuch as the horizontal coordinates of control points near the center of the

moon can be established from earth-based operations (hopefully) to an accur-

acy of + ZOO meters, but degrading to about + I000 meters toward the limb,

these observations would be of benefit for horizontal control in the limb areas,

and vertical control near the center. This would be of some value, and the

exercise would determine the utility and validity of these observations for

future missions, or the validity of modifying the SXT on future missions.

B. COORDINATION WITH LUNAR ORBITER PHOTOGRAPHY

As indicated earlier, the analysis of the potential results of lunar

16
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Orbiter photography (see Appendix A), shows that with the proper distribution

of reasonably accurate control points, excellent mapping can be accomplished.

The analysis also shows that, with an appreciable modification of the lunar

Orbiter camera configuration, {namely the addition of a star camera back-to-

back to provide precise orientation data) the accuracy can be further increased.

It is therefore recommended that additional study be given to the

sequence of orbiter missions, including planned orbits, regions to be

covered, and control requirements in order that the resultant photography

can be fully supported by the potential SXT landmark positioning that the

astronauts may be able to provide during Apollo missions. Further-

more, with close coordination between the Apollo and lunar Orbiter pro-

grams right up to the time of the Apollo launchings, detailed lists of

control points in the regions to be surveyed can be selected and the parti-

cular points observed which will be of greatest value to control extension

procedures involved in the lunar mapping programs.

C. LANDMARK IDENTIFICATION STUDIES

Throughout this study, the problem has continually arisen and the

questions asked "What is a well-defined landmark? What will be the

problems of identification of landmark features ?"

None but obvious answers have become apparent during the study be-

cause of the still limited knowledge of the character of tne lunar surface

at the scales of interest. The problem, however, is a very real one,

lying more in the realm of photo interpretation. As more large-scale

lunar photography becomes available, it should be continually studied

and simulation exercises undertaken in the rapid identification and selec-

tion of, and centering on, suitable features.

D. EQUIPMENT TO BE DEVELOPED

Accomplishment of measurements and experiments recommended will

require development of up to ten items of equipment as shown in Chart IV

17



(depending upon the amount of weight that can be carried, and the amount of

astronaut's time that can be utilized for selenodesy) and a minor modifica-

tion to the space sextant. These developments should begin at once in order

that there will be adequate time for engineering design, instrument con-

struction and testing for reliability, durability and accuracy.

In approaching these developments, the following priorities are suggested:

l, Inasmuch as the fixing of well-defined landmark features by means

of space sextant photography appears to offer the greatest benefits

with the minimum expenditure of weight and astronaut's time, it

is strongly urged that the space sextant modification suggested in

Section XI be investigated at once so that the modification can be

incorporated in the equipment. Design of the SXT recording

camera would then proceed concurrently.

Decision should be made at an early date as to whether or not both the

panoramic camera and the precision frame camera can be carried on

the missions. If they can, development of both should proceed; if

they cannot, the precision frame camera can be constructed in such

a manner as to provide the necessary measurements.

, Decision should be made as to whether or not the top of the LEM

can be used as an observing platform and such use provided for,

in order that proper camera supports can be developed.

o For the highest accuracy of results, the laser ranger is a key

item of equipment. In order to fulfill accuracy requirements,

development should begin at an early date.

So No comments are being made regarding development of the gravi-

meter, as that item is being provided for geophysical purposes.

Other items listed in the chart can probably readily be developed.

18
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Development efforts should include:

1. Detailed engineering design.

Z. The best in rugged and precise construction.

3. Extensive tests under simulated lunar conditions to determine:

reliability, durability, repeatability, handling characteristics and

accuracy of reduced data.

Continuous attention should be given to the state of the art relating to

these items of equipment up to the latest possible time when any modifications

could be made. This is particularly true relative to design of equipment

supports to be used on the lunar surface and the design of the laser ranger;

however, the other items of equipment could be frozen much earlier.

E. ASTRONAUT TRAINING

All equipments and systems have been designed to require minimum

effort and specialized training on the part of the astronauts. This is particu-

larly true with regard to the lunar surface measurements. However,

training and simulation exercises must be conducted in pressurized space

suits in a topographic environment as comparable to the moon as possible in

order for the astronauts to have a thorough understanding of the procedures

involved, and to gain manual dexterity and a realistic time schedule for the

operation.

With regard to SXT observations, the following is recommended:

. The astronauts must be thoroughly trained in lunar terrain feature

recognition and landmark identification. This will undoubtedly be

undertaken in connection with navigational exercises, and it will

have equally valuable application here.
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Zo A considerable amount of dexterity will be required to fix on the

reference stars and the desired landmarks accurately enough to

make the results useful for selenodetic purposes. Intensive

exercises in a simulator should be undertaken in order to achieve

the necessary proficiency.

Inasmuch as all data will be recorded either photographically, or

verbally on tape, and reduced by post mission analysis, no training in this

area will be required.

F. DATA REDUCTION

Reduction of photographic data contemplated in these experiments will

be by well established standard techniques utilized for similar type observa-

tions on earth; and these methods are not detailed in this report. The possible

exception is the utilization of a panoramic camera for astronomic observa-

tions; so formulas for this purpose have been derived and are included in

Appendix D.

As a byproduct of the error analysis made to determine the potential

accuracy of control points and mapping that could be derived from lunar

Orbiter photography, mathematical concepts and formulas were derived which

if applied would represent a refinement in precision of results as compare ql

with current practices. This mathematical analysis is also presented in

Appendix A .

G. SUMMARY CHARTS AND TABLES

Tables which follow summarize in condensed form the course of the

study and its conclusions.

Chart I is a flow chart of the study process and lists recommended

techniques.
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Chart II shows a tabulation of the six lunar surface techniques listed in

Chart I, including objectives to be achieved, instrumentation needed and

estimated accuracies of results.

Chart III summarizes the two methods of making observations from

the CSM, giving procedures and expected accuracies.

Chart IV summarizes the proposed equipment recommended for lunar

operation including pertinent characteristics, and size and weight.
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SELENODETIC REQUIRE_NTS

I. Refine Lunar Figure

2. Establish Basic Datum

3. Improve Ma)ping Control

INPUTS

i. Existing Mapping

Programs

2. Orbiter Photography

3. G & N Equipment

4. Ground Survey Methods

SYSTEM DESIGN

STUDIES

CONSTRAINTS

i. Mission Profile

2. Topography at Land-

ing Site

3. Lunar Environment

4. Astronaut Mobility

OBJECTIVES OF

SURFACE OPERAT IONS

i. Define Lunar Pole

2. Find Astro Position

and Azimuth of LEM

3. Refine Lunar Figure

4. Install Survey Con-

trol

OBJECTIVES OF

CSM OPERATIONS

i. Fix LEMPosition

2. Locate Landmarks

3. Extend Survey Control

SURFACE TECHNIQUES

i. Circumpolar Star

Photography

2. Horizon-Star

Photography

3. Photograph of CSM

Against Stars

4. Earth Photography

of Lunar Beacon

5. Gravimetry

6. Ranging to Survey

Targets and Photo-

graphic Measure-
ments of Baseline

I
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EVALUATION FACTORS

I. Equipment Weight

and Complexity

2. Observational

Methods

3. Data Reduction

4. Error Analysis

i

I RECON_ENDED iSYSTEM

SUMMARY CHART I - STUDY FLOW CHART

CSM TECHNIQUF__

i. SXT Dual LOS Photography

of Landmarks and Star

Field

2. SCT Visual Observation

to LEM and Landmarks-

angles Recorded
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SEC TION III

PROBLEMS INVOLVED IN ESTABLISHING A TRUE

SELENODETIG COORDINATE SYSTEM AND

TRANSFORMATIONS BETWEEN COORDINATE SYSTEMS

A. INTRODUCTION

Before proceeding with discussions of means of implementing selenodetic

measurements during the Apollo missions, it would seem useful to define

the essence of selenodesy itself and tO highlight the problems which seleno-

desy is endeavoring to solve.

For purposes of this discussion, selenodesy will be defined as "the

science of measuring the size and shape of the moon and determining posi-

tions and distances thereon". This implies the establishment of a lunar co-

ordinate system suited to accomplish this purpose with appropriate accuracy.

Inasmuch as one of the objectives of such an endeavor is to permit the

picking of landing sites on the lunar surface and accurate navigation to these

landing sites, suitably accurate transformations must also be possible from

the lunar coordinate system to earth-based coordinate systems, in which

tracking data are accumulated and guidance and navigation maneuvers de-

fined and oriented, and vice versa.

Perhaps the best way to sketch the problem of interrelationships of the

various coordinate systems involved is to consider the guidance require-

ment of the Apollo spacecraft system and its LEM. It has been specified

that the guidance and control systems of the Apollo vehicles, using position

and velocity data originally obtained from terrestrial tracking stations, but

later referred to other coordinate systems and thus making use of trans-

formations between the coordinate systems, should be capable of bringing

the LEM to a safe landing on a preselected site on the moon's surface, with

a c. e.p. of no more than 0.5 nautical miles (900 meters approximately).

This requires that the "position error" of the spacecraft be no greater than

1500 feet (450 m approx.). The expression "position error" is set in quota-

tion marks here to indicate its ambiguity, namely, "position error with
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respect to what coordinate system?" To resolve this ambiguity we must con-

sider a series of coordinate systems, errors in each, and errors in trans-

formations between them. (There are, of course, errors in the guidance

and navigation equipment and its operation which are not our concern in this

analysis. )

B. COORDINATE SYSTEMS INVOLVED IN THE PROBLEM

For the sake of clarity, it is advisable to set forth a few explicit defini-

tions, elementary and commonplace though they may be, as we shall be

dealing with a number of coordinate systems, some of which closely re-

semble each other and invite confusion.

In what follows, the distinction between a spherical (polar) coordinate

system and its associated righthanded rectangular (Cartesian) coordinate

system will be disregarded: they will be treated as two interchangeable

representations of the same system. If the z-axis (x3-axis in vector

notation) of the Cartesian system is the axis of symmetry of the polar sys-

tem, and the xy-plane (xlxZ-plane) of the Cartesian system is the "equatori-

al" plane of the polar system, then the rectangular coordinates (x, y, z) are

related to the polar coordinates (r, _ , 6) by the equations:

x = r. cos6 cos _ r = (xz + yZ + z z) I/Z

y = r. cos6 sin _ _ = arctan (y/x)

z = r. sin6 6 = arcsin(z/(x z + y2 + z 2) i/Z)

From these equations it is obvious that we have adopted the astronomical-

geophysical convention of measuring the second angle 6 from the "equatori-

al" plane (xy-plane), positive "northward" or '%lpward" (toward positive z)

and negative "southward" or "downward" (toward negative z), rather than

the usual mathematical convention of measuring the second angle ("polar

angle") from the positive z-axis. Thus, in our case, 6 ranges from

- 7//Z to + 97/2, rather than from 0 to 7r . Furthermore, the equations

show that _ = 0 in the xz-plane, and increases in a counterclockwise direc-

tion if viewed from the positive z side of the xy-plane.

Z7



It will sometimes be convenient to treat (x,y,z) or (Xl, Xz, x3) as a
vector and denote it by x__also to rotate x" by an angle _ around one of

the axes x. and to denote the corresponding rotation matrix by R i ( (_)"1
The error, sometimes used as equivalent to standard deviation, of a quantity
q will be denoted Eq in this section. The error analysis in this section

is not intended to be sophisticated or exhaustive; it is only intended to show

clearly their nature and some of the effects they produce.

We shall be dealing with the following coordinate systems, which will

be defined and examined:

Type I: terrestrial topocentric systems, with the terrestrial

tracking station at the origin.

Type II: geocentric systems, with the earth's center of mass or

attraction at the origin.

Type Ill: selenocentric systems, some with the moon's center of

mass or attraction at the origin (Type IIIa), others with

the moon's center of figure at the origin (Type IIIb).

(The fact that these systems are not identical is one source of difficulty

to be examined. It is also one source of confusion. )

Type IV: lunar topocentric systems with the LEM, or nearby

defined point on the moon's surface, as the origin.

C. ELEMENTS OF THE PROBLEM OF TRANSFERS BETWEEN SYSTEMS

There how follows an outline of the elements of this problem, which

will also serve as an outline of what remains to be done. Take the problem

in its most stringent form: a requirement to direct a vehicle to a point on

the moon's surface, selected from a photograph of the lunar terrain, with

a c.e.p, of 900 m. The elements involved in carrying out this requirement

form a sort of chain, which is outlined below.
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2.

3.

Link 1. At the outset, the Apollo vehicle is tracked from a DSIF

station on the earth; and the observed quantities are the position

and velocity vector of the vehicle with respect to that station in

topocentric coordinates, probably altazimuth (Type I). These

observations are affected by uncertainties due to the performance

of the equipment and the uncorrected effects of the environment,

such as propagation errors. Symbolize these errors by E 1 (the

symbol is not intended to be an algebraic quantity or quantities).

Link Z. Next, the position and velocity vectors of the vehicle are

represented in geocentric Cartesian coordinates with origin at the

supposed center of attraction or mass at the center of the earth

(Type II). (Unless the mass of a body is distributed very unsym-

metrically, the center of attraction, the center of mass, and the

center of figure can all be taken to be identical. ) To make the

transfer from topocentric coordinates (I) to geocentric coordinates

(II), the radius vector of the tracking station and its velocity due to

the earth's rotation are used. The transfer is thus affected by the

uncertainty in these quantities, due to an imperfect knowledge of

(i) the location of the station with respect to a particular geodetic

net, and of (ii) the goodness of fit of the geodetic datum to the

real earth, i.e. , its "ties" to a hypothetically perfect world

system; or (iii) in some cases, errors of direct ties between the

station and coordinate system II, carried aut by analyzing "station

errors" in tracking data. Item (ii), of course, includes any un-

certainty in the earth's radius. Call the collective effect of all

these uncertainties E 2.

Link 3. At a later stage, the Apollo vehicle (CSM and LEM still

fastened together) is injected into a circumlunar orbit. After a

certain amount of tracking data is accumulated, a circumlunar

orbit and ephemeris can be computed, with positions and velocities

still in geocentric coordinates (system II). The orbit would be

greatly simplified by a transformation of coordinates to a new

origin, namely its own attracing focus in the moon, which is,
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of course, the center of mass of the moon. The Keplerian elements

of an unperturbed orbit a (semimajor-axis), e (eccentricity), and

T (time of pericentric passage) or its equivalent M ° (mean anomaly

at epoch) are invariants in the geometric-transformation sense of

the word; and the angular elements i, _ , and _ are invariant

to within an arbitrary constant, depending on the orientation in

space of the reference plane and direction, i. e., the orientation

(Euler) angles of the selenocentric coordinate system. In the

original solution carried out in geocentric coordinates (II), the

coordinates of the attracting focus inside the moon, which we shall

take to be identical to its center of mass or barycenter, can in

principle be treated as unknowns, and solved for. To treat the

geocentric coordinates of the moon's barycenter of attraction

as completely unknown would lead, however, as we shall see, to

enormous and unnecessary complications; furthermore, this pro-

cedure would amount to discarding the already quite accurate in-

formation we have on the motion of the moon's barycenter around

the earth accumulated over centuries of observation. Therefore,

a solution in which the geocentric coordinates of the moon's bary-

center are treated as approximately known, and small differential

corrections to those coordinates are treated as unknown, is de-

finitely to be preferred. Either way, the solution will lead to a

set of geocentric coordinates of the moon's barycenter, which

will serve as the origin for the new system of selenocentric

coordinates. We shall call such a system a "barycentric system",

(Type Ilia) understanding that it refers to the center of mass of

the moon. ("Selenobarycentric" might be a more precise expres-

sion, but seems too cumbersome.) The "improved" geocentric

coordinates of the moon's barycenter (which are time-dependent)

provide the tie to make the transfer between geocentric and the

new barycentric systems.

The foregoing solution seems to involve no further original

sources of error than E l and EZ; but the solution for the differential

corrections to the geocentric coordinates of the moon's barycenter
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will have errors that are functions of errors of types E 1 and E 2, and

of the variables. Furthermore, it seems likely that the solution for

the coordinates of the moon's barycenter may be affected by syste-

matic errors due to the peculiar distribution of the circumlunar

tracking data. For instance, the fact that the Apollo vehicle can-

not be tracked behind the moon might be expected to permit errors

analogous to errors of closure to arise. Such errors would tend to

smooth out during the course of a lunation as the gap in the tracking

data moves around the orbit, but the Apollo vehicle will be tracked

for at most two or three revolutions before the LEM is released for

descent. Also, tracking by range data and range-rate data (with

directional data having lower weight) leads to solutions analogous

to the solution of double-star orbits from spectroscopically deter-

mined Doppler shifts: in these solutions the semimajor-axis a,

and the inclination of the orbit to the plane of the sky I occur only

in the product a. sinI, and hence cannot be separated. Also the posi-

tion angle of the line of nodes (intersection of orbital plane with the

"plane of the sky", perpendicular to the line of sight} is completely

indeterminate. In our case, however, these effects may not be

especially severe. This whole subject will be treated in greater

detail below.

Link 4. The next step involves a transfer from the set of (lunar)

barycentric coordinates just described, i.e., those in which the cir-

cumlunar orbit or ephemeris of the Apollo vehicle are expressed

(Type Ilia}, to a quite different set of selenocentric coordinates cor-

responding to some lunar map; for instance, the ACIC, AMS, or

similar systems (Type lllb). Map systems of this type are typically

the result of an over-all least-squares adjustment of the three-

dimensional positions of lunar landmarks obtained from (two-dimen-

sional) measurements of the coordinates of the landmark with respect

to the apparent limb (or apparent center of the lunar disk) at different

librations, the librations providing enough of an equivalent parallac-

tic effect to make a three-dimensional stereoscopic solution. Most

recent measurements of the two-dimensional positions of lunar land-

marks x', y' on the plane of the sky have been carried out almost
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entirely on photographs, but the reduction of these measurements

typically makes use of the earlier heliometer measurements of a

number of well determined points as reference points. E6_7

The original measurements X'm, y' may correspond to anm
arbitrary origin and orientation of the photographic plate (just as

in the case of photographic reductions of astrometric star positions),

or they may be positions relative to some landmarks taken as re-

ference points. In the case of the heliometer work, the measure-

ments consisted of position angle of the heliometer displacement

axis (i. e. , a line seen against the sky passing through the land-

mark and the center of the apparent disk) and the arc distance
of the landmark from the limb. The measurements are reduced

in suc_ a way that the origin of the reduced x', y' system is sup-

posed to be the "mean libration point"; that is, the point on the

surface of the moon in the center of the visible hemisphere whose

excursions from the center of the apparent disk, due to the moon's

librations, average to zero in the long run. The crater Mosting A,

a fairly sharply defined feature near the mean libration point, is

used for a primary tie between mapping systems.

Finally, the three-dimensional coordinates of landmarks are
fitted to an origin at the center of a sphere which best fits the

apparent figure of the moon, with (what we shall call) the x-axis

passing through the mean libration point and the z-axis parallel
to the moon's (supposed) axis of rotation. Since the measurements

are commonly given in fractions of a lunar radius, the scale of the

whole system in meters or kilometers is given by the assumed

value of the radius of the best-fitting sphere. Such a selenocentric

system, with its origin at the center of figure of the moon, might

be called "morphocentric" or "selenomorphocentric", in contra-

distinction to "barycentric" for a center-of-mass system.

There appears to be a discrepancy between the positions of

the center of mass and center of figure of the moon, which is almost
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without question due to the way a sphere has been fitted to the mean

figure. The discrepancy is in the sense that the center of figure

is displaced 0.3" to 0.6 T' (arc-seconds) toward the lunar south

pole from the center of mass, corresponding to a linear displace-

ment of 500 - 1100 m. (There might also be a component of dis-

placement in the direction of the moon's x body-axis, but data

are too meager to hazard a guess as to the amount. ) Chester

Watts, author of the atlas, The Marginal Zone of the Moon,

(Astronom. Papers AE _ NA, Vol. 17, USNO) stated in a private

communication that he is satisfied that the discrepancy can be

completely explained as follows (somewhat simplified}: Near the

south pole of the moon, there is a series of mountain ranges

parallel to the limb and to each other, so that librations in lati-

tude causes each of these ranges to rise or set behind the one in

front of it, in such a way that the ranges maintain an unusually

high skyline at the limb, and never allow a view of the lower lunar

terrain between the parallel ranges. In order to explain the magni-

tude of the discrepancy in a simple way, these mountain ranges

need only be about 500 to 1100 m higher, i. e., farther from the

moonts center of mass, than the average level of the terrain

near the south pole. The situation is actually somewhat more

complicated than described here; it is discussed by Watts,

loc. cit., p. 950-951.

At this juncture, it is not particularly important to pin down in

a definitive way the numerical value of the discrepancy or offset

of the center of figure from the center of mass, but simply to make

allowance for the possibility that one exists when setting up the

equations expressing the transformation from barycentric to morpho-

centric coordinates, and vice versa.

o

As noted below, we shall call mapping system errors E 3.

Link 5. At this point we take note of the fact that the transformation

between barycentric system IIIa to morphocentric system IIIb con-

tains dynamic elements. The instantaneous orientation in space of
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of the physical body of the moon, and therefore any coordinate

system attached to it, depends on the moon's physical libration,

in latitude and longitude, which are functions of the time. Epheme-

rides of the physical librations are given in the national almanacs,

e. g. , the American Ephemeris and Nautical Almanac, U.S.

Government Printing Office; they are on pp. 314-321 in the issue

for 1965. Their amplitude is small ( _ 0.04o), and their un-

certainty, i. e., the uncertainty of the direction of the moon's

axis of rotation in space, as calculated by the formulas used in

the almanacs, is of the order of + 0.01 ° (possibly ÷ 0.02 ° in

some cases). This corresponds to + 300 m, or somewhat more,

on the moon's surface.

It is also possible that the body of the moon shifts with respect

to the axis of rotation in a way analogous to the wandering of the

terrestrial poles. The dynamic stability of the moon's motions

require, however, that such a wandering of the lunar poles be

small and, in any case, the data are inadequate to detect any

such motion. The data are barely adequate to evaluate the physi-

cal librations, as exemplified by the numerical information in

the last paragraph.

Errors arising from the transfer from the barycentric coordi-

nates of the circumlunar trajectory to the morphocentric coordi-

nates of a mapping system we shall label type E 3, including those

arising from the imperfect knowledge of the direction of the moon's

axis of rotation.

o Link 6. Finally, there are the uncertainties of location of a parti-

cular lunar landmark or set of landmarks with respect to its own
f!

origin, tied to the craterlet Mosting A. These uncertainties, both

present and prospective for 1969, are shown in Table III-l. We

see that they range from 220 m for prospective horizontal com-

ponents near the center of the visible hemisphere to 1300 m for

present horizontal components near the limb. The placement of
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a particular landing site (selected from a photograph of the moon's

surface)

of the same general type as that involved in deriving the coordi-

nates of any arbitrary point on the moon's surface.

which we shall label type E 4,

systematic error of the particular set of reference landmarks

chosen as a reference for the arbitrary point (since this error is

the collective effect of the accidental errors of the individual re-

ference points,

using a large enough number of reference points),

accidental errors of measurement of the arbitrary point.

case of a landing site, the contribution of (ii) is likely to be greater

than average, because the area will presumably be smooth, with-

out many usable reference points in the immediate vicinity,

hence more difficult than average to define with respect to local

coordinates tied to the nearest reference points.

of (i) may also be larger than average, if reference landmarks

in the neighborhood are scarce.

D. ESTIMATE OF THE MAGNITUDE OF THE ERRORS OF COORDINATE

SYSTEMS AND THE TIES BETWEEN THEM

I

I
in such a system of map coordinates involves an error I

Q
ae gene "aL type a 3 ti_at ii vol'/ed in dE riving th_ c,)ordi-

ny arbi r Lry poirt cn th_ moon's sur ace. These errors, |
sl_,ll lab, 1 type ];4' are a compound of (i)the collective __

.c -.rroz c[ the pa_tizular set of refe_ ence landmarks I

Iarefe: elce for :he arbitrary point since this error is

.ti_e eft 3¢ t of the aczidertal errors c the individual re-

oil ts, it may be made comparatively small, simply by I

.r_ e enough number of reference poiz is), and(ii) the

t1 errors of measurement of the arbitrary point. In the

la Iding site, the contribution of (ii) .s likely to be greate

ag *.,because the area will presumab y be smooth, with- m
us able reference points in the imme,.iate vicinity, and I

re difficult than average to define wil h respect to local I

es tied to the nearest reference poinl s. The influence I
a.so be larger than average, if refe:ence landmarks

_ HE MAGNITUDE OF THE ERROR _ OF COORDINATE I

D _'HE TIES BETWEEN THEM I

i. Tracking Station Topocentric Coordinates (I): Errors of Type E l I

Here we adopt the estimate given by Bissett-Berman (Capabilities of I
mira

_iio Guidance and Navigation, Final Report on Contract NASw-

i, 2 March 1964, hereinafter referred to as BB) for Radar A I
I

ndez_'ous" situation s, based on information obtained from IPL

,rd Sl_ace Flight Ceater (p. 4-3 of the report). These instru- I

qB are

RMS error in range rt, Er = 15 meters I
RMS error in range rate _ , E_ = 0.03 meters/sec

t

RMS error in altitude angle 6_ or azimuth _ _ (actually I

/_t cos 0_ t) , E_2' = E_ t cos 6[ = 8 x l0 -'_ radian

Data sampling rate: 1 sample/min. |

|

MSFN for Apollo

688, Amend.

and "lunar rendezvous" situations,

and the Goddard Space Flight Center (p.

mental errors are:
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The subscript t refers to the "topocentric tracking" coordinate system.

These estimates apply for a single tracking station.

The total error Er also contains a contribution from the uncorrected

part of the propagation error. Near 2000 Mc/s, propagation effects amount

to possibly 4 to 40 meters, depending on the total electron content per
Z 2

cm cross section along the beam path. The total number per cm depends

primarily on the state of the ionosphere and the altitude angle (_ of the beam.

The interplanetary medium contributes very little. To the extent that the

state of the ionosphere can be predicted from its correlation with time of

day, time of year, geographic location, and level of solar activity, the

corrections can be calculated; in any case they can be computed after _he

fact if data on ionospheric electron density distribution are available. In

this way the uncorrected part of the ionospheric propagation error can preb-

ably be reduced to 10% of the error -- negligible in comparison to other

errors. (See also Bissett-Berman, Appendix K. )

Similarly the total errors, E(( and cos(/ E ,5 , contain contributions

from what might be called ionospheric refraction errors. The latter is

affected by horizontal refraction, which is usually smaller than the verti-

cal. The contribution ECZ of vertical refraction at 1000 Mc/s is of the

order of 15 x l0 -6 radians ( < 15 ° from the zenith) to 100 x l0 -6 radians

( < 15 ° from the horizon). These are average daytime figures; nighttime

refraction is even smaller, and it is smaller at higher frequencies (e. g. ,

the planned frequency near 2000 Mc/ s). (See e. g. , Handbook of Geophysics,

Rev. Ed. USAF/GRD, MacMillan 1960, Chap. 15.) These errors are all

smaller than the instrumental angular pointing error; but these effects are

systematic at a particular station and should therefore be removed by

corrections.

The angular error in pointing at a single station is, of course, too

large to contribute any weight to determining position at lunar distances,

in that it leads to a transverse error Ep of 8xl0 -4 x 384,400 km, or about

300 km at the distance of the moon. (Here p represents a linear coordi-

nate perpendicular to r, or perpendicular to the line of sight. ) But it is
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nowhere suggested that one will have to rely on radar measurements from

a single station to track a circumlunar vehicle with precision.

Let us consider two stations working in concert at the ends of a base-

line of length b, but not like the two components of an interferometer, which

would require simultaneous intercomparison of the phase of the incoming

signal at the two stations. Each station has a range error Er = 15 m. The

transverse error along a line parallel to the baseline joining the stations

is Ep = r.E_' , where E_ is the error in the angle _ at either

station, subtended by the other station and the vehicle. In other words

= arc cos {F._/rb), where barred symbols are vectors and unbarred

symbols are scalars. (Now p stands for a transverse coordinate con-

taining the component parallel to the baseline.) E _ is approximately

( d_/b sin _ )Er in which the following approximations have been used:

r I = r Z = r, 1 = Z = Z

The error Eb contributes so little to Ep that it makes no difference whether

b is perfectly known or not. If we assume that b is a little larger than

the radius of the earth for two well-spaced tracking stations, say, 7700 km

so that r _ 50 b, then Ep = 1060 m.

Strictly speaking, our estimate was based on the situation where the

baseline connecting the two tracking stations is approximately perpendi-

cular to the direction to the moon. The full expression for Ep in oblique

cases becomes rather complicated, but the approximate expression

( V'_ib sin _./)r. E_ can still be used.

The uncertainty Eq in the position of the spacecraft in the transverse

direction, perpendicular to the baseline connecting the two tracking stations,

will be as large as the transverse error for a single station, unless some

constraints are added that make q a function of p and r, for example, a

gravitationally controlled trajectory. But in this section we are considering

the uncertainties from the standpoint of pure tracking. This discussion

shows that it would be desirable to have three tracking stations, arranged
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in the largest possible equilateral triangle projected against the "plane of
H

the sky (plane perpendicular to the line of sight) as seen from the moon.

Ideally, they would be distributed in such a way over the surface of the

earth that, as the earth rotates, and as a station that is the vertex of a

large triangle is rotated to within a few degrees of the earth's east limb

(as seen from the moon), another has risen on the west limb. Such an

arrangement would be achieved by two rows of tracking stations, one

along a zone in middle north latitude_ and the other along the corresponding

zone of south latitude, spaced say, 1/5 the circumference of the latitude

circle apart ( _ 72 ° of longitude); but those in the northern row could be

offset half a space (about 30°-40 ° in our example) east or west with respect

to the members of the southern row.

This particular example would thus lead to ten stations altogether. It

is, of course, absurd to try to fit such a distribution exactly; even fairly

large departures from it do not make much difference. (See also BB,

Appendix I and Table Z. 3. ) The necessity for having pairs of stations

spaced sufficiently far apart in latitude in order to reduce the uncertainty

of the spacecraft position perpendicular to its own orbital plane (assuming

a low-inclination orbit as planned in the Apollo program) is better treated

in the section below, in the context of determining the circumlunar orbital

plane of the spacecraft.

Clock errors and their effects have already been thoroughly treated

elsewhere (BB, Appendices F and J); it is sufficient to note here only

the following facts:

(i) Clock errors will appear in the solutions as errors in the range

r, and thus contribute to total Er;

(ii) Clock rate errors will appear as errors in the range rate r or

in the difference in range ri+ 1 - r. corresponding to a single1

observation in which either the number of cycles passing per fixed

time interval is counted, or the length of the time interval re-

quired for a fixed number of cycles is measured.
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{iii) Where the clock error is identical at two stations working in

concert, no error is introduced into the determination of direc-

tion; but if the clock error is different, the resulting error

affecting only one of the ranges will lead to an error in direc-

tion.

Let us consider the effect on the measured direction to a spacecraft,

produced by an error in the direction in space of the baseline connecting

the two tracking stations. Such an error, Ed, has the effect of being

directly reflected in the direction from either of the stations to the space-

craft, as determined by the two stations acting in concert. The location of

Station 2 with respect to Station 1 was denoted above by the vector b. Let

us say that the observed relative location is bob s = btrue plus a vector

displacement error Eb. (The component of the error Eb aligned with

b corresponds to the scalar error El) in the discussion above.) The

component of Eb perpendicular to -b, which we may designate _Zb ',

leads to an error in the direction of b equal to Eb'/b in amount, and lying

in the plane defined by b and Eb. If the direction to the spacecraft forms

an angle i_ with this plane, then the magnitude of the transverse error at

the spacecraft due to this cause will be r. cos2{ Eb'/b. If b = 7700 km

(as before) and Eb' = 77 m, then E'/b = 10 -5, and r cos _ Eb'/b = 3.8cos_km.

This example, better than any other, brings out the importance of having ac-

curate geodetic ties between tracking stations if they are going to be used in

concert to determine accurate direction, without the help of dynamic con-

straints or input of other data. The best existing estimates of the relative

position of two well-determined tracking stations some distance apart

(e. g. , some of the SAO Baker-Nunn stations), is of the order of + 25 m;

only part of this uncertainty lies in the earth-spacecraft line (or earth-moon

line) -- statistically about 50g0 -- so that even under the best present

circumstances Eb' = 15, and Ep from this cause is still 400-500 m.

(Izsak, JGI_ 69, 2621, June 1964) claims a smaller figure for station co-

ordinate uncertainties, but since his results differ from similar results

based on the same kind of data treated somewhat differently, e.g. , Kaula,

JG._.__R68, 473, 1963, these claims should be discounted somewhat. )
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2. Transfer to Geocentric Coordinates (II): Errors of Type E 2

If the topocentric vector from the tracking station to the spacecraft is

r , and if the vector expressing the location of the tracking station relative

to the center of mass of the earth is "_ with an error E_ (in the sense,
g g

true value plus the error = observed value), then the geocentric vector to

the spacecraft is r .....
g = r t + s or r = r t + s =.... g _ g, obs g, obs

r + s + Es = r + Es That is to say, the errors of geo-
t g, true g g, true g"

centric position of the tracking station are reflected directly in parallel com-

ponents of error in the spacecraft position. These are of the order of + 25 m

for well determined stations, but can be as large as several hundred meters

at stations on isolated islands, etc. , not yet tied to any geodetic datum.

Errors of stations with respect to nets surrounding them can be made al-

most arbitrarily small, especially if geodetic stations in the net are not very

far away. The errors of the ties connecting individual geodetic datums to

other datums or to a world datum vary from about 15 m to I00 m. These

are therefore estimates of the displacement errors of the spacecraft posi-

tion in geocentric coordinates (in addition to tracking errors already dis-

cu s s ed).

The direct effect of errors is not particularly serious, especially since

there is every prospect that during the next several years, the geocentric

coordinates of tracking stations will be refined, either by direct surface

surveys or by analysis of the behavior of "station errors" in satellite

tracking data. The latter has already been done for some stations, e.g. ,

the SAO work with residuals in the photographic positions from Baker-Nunn

plates, already cited, or the work at the Applied Physics Laboratory and the

Naval Weapons Laboratory with Doppler techniques. Similar work tying

stations to each other, rather than to the earth's center of mass, has also

been carried out.

As we have seen in the last section, however, the indirect effect of

station location errors, relative either to each other or to the center of

mass of the earth, can be quite damaging.
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Errors in the velocity of the tracking station relative to the geocenter,

which affect Doppler velocities referred to the same center, are on the

whole too small to worry about. The error in the tracking station motion,

due to an error in distance from the axis of rotation (the radius of rotation)

is 7.28x10-5m/sec per meter error in the radius. At low latitudes, where

the radius is predominantly vertical, for stations connected to datums by

surveys, the error in the radius of rotation is compounded of the error

in elevation above sea level, and the error in geoid height, typically 1 or

2 m and 20 m respectively. At high latitudes, where the radius of rotation

is more nearly horizontal, and horizontal station errors may reach i00 m

for poorly tied stations, the error in the velocity of the station would still

be less than l cm/sec.

3. Transfer to Barycentric Coordinates at the Moon (III)

If one attempts to analyze in all generality the errors involved in the

transfer from geocentric coordinates (If)to a new origin at the center of

mass of the moon (IIIa) the situation becomes immensely complicated.

As stated above in subsection C, Link 3, it is possible in principle to

leave all the parameters of the moon's geocentric orbit as unknowns,

but the number required to describe the complicated motions of the moon

with sufficient exactness ( < i00 m, in order not to degrade the results

that can be obtained from the spacecraft tracking data) would run into

the thousands or tens of thousands, would require years of tracking data,

and would thus be hopelessly impracticable for the present. In fact the

only really feasible and effective way is to adopt a reasonably well fitting

reference orbit defined by a set of parameters, then use the tracking

data to correct the parameters by differential corrections. In a computa-

tion in which linear equations are set up with the differential corrections

to assumed values of the parameters as unknowns, it does not make any

difference how the assumed values are computed, provided that the

differential corrections are small enough that the linear approximation

is valid.
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From the practical standpoint, the following appears to be the best

procedure:

(i) Find simple expressions that will represent the moon's geo-

centric orbit with tolerable faithfulness over a period of time

equal to the duration of the Apollo mission. These expressions

might be the osculating orbit or a mean orbit, possibly for an

epoch half-way in time between the beginning and the end of the

significant part of the mission. The period of interest would prob-

ably be bounded by the spacecraft's entry into and departure from

the "lunar sphere of influence", where the moon's gravitational

field predominates. Assuming that this phase lasts about 3 days,

one might need to add periodic terms with periods up to about l0

times this length -- in fact any periodic term whose phase ampli-

tude exceeds, say, 100 rn in a d-day time interval.

(ii) Of these simple expressions, choose the one with the least number

of disposable parameters to which assumed values can be assigned

that will represent the moon's position "satisfactorily", as de-

fined in (iii) below.

(iii) Set up linear equations in which differential corrections to the

parameters in (ii) are unknown quantities; "satisfactory" in (ii)

means that the assumed values of the parameters are close enough

to the corresponding true values that the linear approximation

for the behavior of the differential corrections is valid (see BB,

Appendix B). It goes without saying that these equations will also

contain all the other unknowns of interest, particularly the para-

meters of the spacecraft orbit around the moon's center of mass.

(iv) The present state of knowledge of the moon's orbit, built up over

centuries of observation, is sufficiently precise, that probably

most of the discrepancy between the predicted ephemeris of

the moon's center of mass (that calculated from the assumed

parameters) will differ from the observed ephemeris (that
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derived from the center of attraction fitted to the spacecraft

tracking data) chiefly in the magnitude of the geocentric radius

vector of the moon. Differences in the mean longitude at epoch

may also be significant. Differences in observed and computed

radius vector may well be of the order of 1-4 km.

(a) Possible difficulties in determining the semimajor axis a, and

the inclination i, of the spacecraft orbit around the moon's barycenter.

As noted before, there are certain resemblances between (i) the problem

l

l
l
l
l

I
of finding the elements of the spacecraft's barycentric orbit around the

moon from Doppler data and (ii) the problem of determining the orbit of

a spectroscopic binary star from Doppler-shifted spectrograms. (For

a detailed treatment, see H. C. Plummer, An Introductory Treatise

on Dynamical Astronomy, Cambridge U. Press 1918, Dover Reprint,

1960, Chap. XI.) The problem for the spacecraft is somewhat simplified

in that the mass of the secondary body (the spacecraft) is negligible in

comparison to the mass of the primary body (the moon), and the mass

of the primary is approximately known. The radial velocity V of the

spacecraft can be given by

V = V + K(cos u + e cos W')
m

in which

V
m

the system (i. e.,

is the radial velocity of the center of mass of

the moon),

u is the angle in the orbital plane of the spacecraft from the

"receding node" (point where the orbit pierces, in the direction away from

the observer, the plane perpendicular to the line of sight through the moon's

barycenter) to the spacecraft, measured in the direction of orbital motion.

U3' is the angle in the orbital plane from the "receding node"

to perilune, also measured in the direction of orbital motion.

e is the eccentricity, and
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K is the velocity (GM /a (1-eZ)) 1/Z sin I, in which G is the
m

universal constant of gravitation, M the mass of the moon, a them

semimajor axis of the spacecraft orbit, and I the inclination of the

orbital plane to the plane of the sky (plane defined under the defini-

tion of u above).

It should be noted in passing that the foregoing expression is exact

only for an orbit viewed from infinity, where the lines of sight from the

earth to all parts of the orbit are parallel. The moon is close enough

that all the measured radial velocities will not be identical with what

would have been observed from infinity, but will differ by factors ranging

from 1. 000 000 to 0. 999 988 (i. e., cos (4.9 mrad) for an 80-nautical-

mile-high orbit). Preparing the Doppler data for this treatment is cer-

tainly possible, but we are not concerned with that here: the main pur-

pose of this section is to point up certain ambiguities in a simple way.

The parameters e, _, and K can be derived from what amounts

to a Fourier-series fit of the radial velocity data plotted as a function of

the time, using only the lowest-order terms with period P and P/2.

(The higher-frequency terms will be found to be redundant, unless the

orbit is not elliptical. ) P is the period of the orbit, which can be

obtained with reasonable precision from timing a single circuit of the

spacecraft around the moon (e. g., from eclipse to eclipse, with due

regard for the orbital motion of the moon around the earth during the

lapse of approximately Z hours. Making use of the relations:

Z x areal velocity = Z2ab/P = Z_TaZ(1-eZ)I/Z/P (a geometric relation),

orbital angular momentum per unit mass = (GMma (1-e 2 ))I/Z

relation), and the mean angular motion n = Z yr /p,

we have

a sin I = (K/n) (l-eZ) I/Z.

The parameters a and sin/ cannot be separated by this means alone.

Without a, it is not possible to get a good estimate of the quantity GM
Z 3 m

for the primary from the expression n a = GM .
m

(a dynamic
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There are several possible ways out of this difficulty, at least in

principal.

First, one can use the present value of the earth/moon mass-ratio,

80.3Z, thought to be good to about 1:4000. With this estimate of the un-
2 3

certainty, the uncertainty in a from n a = GM is about 250 rn. Then,m

with this value of a, one could get sin I from sinI = (K/na)(l-eZ) I/Z. The

relative uncertainty in a is Z50/1900x103 or 1.3x10 -4, corresponding to

13 in the 5th decimal place of sinl. Since the orbit is seen nearly edge-on

from the earth, so that I is within a few degrees of 90 ° , this is not a very

sensitive way to determine I. Right at 90 ° , the uncertainty corresponds

to 0. 13 millirad. This in turn corresponds to an uncertainty perpendi-

cular to the orbital plane that ranges up to a.EI at 90 ° from the nodes.

This amounts to Z50 meters perpendicular to the orbital plane, as well

as in the plane. (Although a is also implicit in K, that fact has

no effect on the estimate of the error in sinI, because K is determined

from the tracking data as if it were completely independent of a. )

The second possibility is that the directional data from the tracking

is good enough, or can be made good enough, to keep the out-of-plane

uncertainty satisfactorily sinai1. This is the reason that pairs of tracking

stations in the same general region in longitude should have some separa-

tion in latitude (see Subsection 1 above; also BB, Appendix I). Notwith-

standing this precaution, this method could easily be defeated by errors

affecting the direction of the baseline between two stations. This error

is a bias error of unknown magnitude as far as a particular pair of

stations is concerned, and one can only hope that the bias in observa-

tions by any pair of stations, insofar as the observations affect the

determination of sinI, can be separated from the mass of observations

from all (pairs or triplets of) stations sufficiently well to be treated as

an unknown, and solved for. A bias in sinI or I would lead to a bias

in the direction in space of the orbital plane with respect to the moon' s

equator, that is, in the standard Keplerian elements i and Q
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In solving for the circumlunar orbit, it will often be convenient as

it is in similar cases first to find the plane of the orbit, i. e., the Eulerian

angles defining the position of the orbital plane with respect to the refer-

ence plane, in this case the earth's equatorial plane; then, having found

the orbital plane, to rotate (and, in the case of circumlunar orbits, trans-

late) the terrestrial equatorial coordinate system (Type I_I)to a new bary-

centric lunar coordinate system in which the principal plane is the plane

of the circumlunar orbit, not the moon's equatorial plane. This coordi-

nate system is, of course, another subspecies of Type IIIa. This trans-

formation makes it possible to reduce the problem of solving the equations

of motion for the circumlunar orbit to a problem in only two dimensions.

It also assumes that the Eulerian angles, which we may label _ , _ ,

and _ , are known or that they can be determined with some certainty

from the tracking data. Otherwise, the final out-of-the-orbital-plane

error of the spacecraft position may look as if it were zero; but it only

looks that way because the problem has been reduced to a two-dimensional

one, so that out-of-plane errors vanish by definition. The real out-of-

plane-error is still there, but disguised in the errors of the Eulerian

angles _ , _ . and 4, as determined from the tracking data. _Ac_ally,
only two of the three Eulerian angles are required to define the orientation

of one plane with respect to another.)

A third possibility for separating a and I exists, although it

requires tracking over at least a quarter of a lunation, and preferably

longer. It must, therefore, be done with missions other than Apollo,

e. g., perhaps with Lunar Orbiters which last a good deal longer than

Apollo. As the moon moves around the earth in its orbit, the inclina-

tion to the plane of the sky of a circumlunar orbiter will, during the

course of a sidereal month, oscillate between Imi n and 7 -Imi n.

Remember that I is an angle in the range 90 ° + inclination of the

moon's equator to the earth's equator + inclination of the orbiter's

orbital plane to the moon's equator. For an orbit inclined 0° to the

lunar equator, the range in I is the same as the range of libration in lati-

tude for that lunation. This means that the quantity a sinI will oscillate

during the course of the lunation, so that the time corresponding to
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sinI = 90 ° can be identified, and a separated from a sinI. With a

clearly separated, Imi n can be clearly separated, and also the corres-

ponding time, so that a solution for i and _ now becomes possible.

For orbits during time intervals near sinI = i. 000 000, a can pre-

sumably be calculated with fairly high precision on account of the ac-

cumulation of data and the separability of some of the unknowns, like

biases in the original tracking data and departures of the moon from its

assumed orbit. In the light of the calculations reported in BB, p. 5-15,

one might expect Ea << 50 m after a quarter of a month. It is assumed

that during this interval, the orbital plane of the spacecraft does not

precess or change inclination, or that the motion of that plane in space

can be calculated with sufficient precision from known perturbations by

the earth and sun.

It has already been mentioned that the position angle of the line of nodes

of the orbital plane with the plane of the sky is indeterminate, if only range

and range rate are known. One single observation of position removes this

indeterminacy.

One other potential source of serious difficulty should be noted,

namely the fact that the earth-based tracking data cannot cover the

nearly one-half a revolution during which the vehicle is eclipsed by the

moon. Orbits based on data all concentrated in approximately one-

half of a circuit are notoriously susceptible to biases from the effects

of selection. Examples are almost too numerous to cite, and it is not

difficult to invent possibilities in the present instance leading to errors

of the order of 1 km or more. There does not seem to be any certain

way to avoid this situation except by tracking circumlunar vehicles for

periods of at least half a sidereal month in order to observe the whole

trajectory. Even longer periods would be better, i.e., a whole sidereal

month, in order to be sure of separating any effects arising from other

periodic effects in this selection. As in the case of separating a and

sinI already discussed, such an observing program will be limited to

vehicles other than Apollo, since Apollo will not be in circumlunar

orbit long enough to accomplish it.
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This subject is a very complicated one; there is no intention here of

doing more than sounding a word of caution. In sum, errors in the

barycentric ephemeris positions of a moon-orbiting spacecraft cal-

culated from a barycentric orbit based on terrestrial tracking data,

may very well be much larger than the ideal of 20-100 m, which may be

reached with unbiased tracking data accumulated over some tens of revolu-

tions, or data from which the effects of bias have been removed. In fact

it appears that the errors can be as large as several km if biases, e.g. ,

those produced by pairs of tracking stations tracking only the near side

of the orbit, cannot be eliminated.

e Transfer from Barycentric Coordinate System of the Spacecraft

(Type ILia) to the Morphocentric Coordinate System of Lunar Maps

(Type IIIb): Errors of Type E 3.

The coordinate system of lunar maps, taken as a whole, suffers from

fuzzy definition; in fact, about the only way it can be defined from a

working operational standpoint is in terms of the collective numerical

values given to the coordinates of the lunar features. Thus, it might

be possible to say that the "true" origin and the "true" rectangular axes

can be defined as that point and those three mutually orthogonal lines

intersecting at the point that cause the sum of the weighted residuals

for all the landmarks, Xrnap -Xtrue , Ymap - Ytrue' Zmap - Ztrue

to vanish, or alternatively causes the r. m. s. of these residuals to

be a minimum. But we do not have in our possession the quantities

Xtrue' Ytrue' Ztrue for all the landmarks, or even one of them. If we

wish, we could say arbitrarily that the coordinates of one of the land-

marks are "true values" by definition, thus making that landmark a

reference landmark for all the others and therefore part of a datum.
tl

The craterlet Mosting A has this status in those systems in which the

coordinates of other landmarks are essentially relative coordinates

with respect to Mosting A.

Of course in a strict sense we shall never have the "true values"

of the landmark coordinates in any mapping system, for they will
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always be subject to some error; but when improved values become

available (i. e. , those with a smaller standard deviation with respect

to some coordinate system, not necessarily that of one of the map

systems), it will be possible to use these instead of the true values

to form the residuals in question. In making a least-squares fit for a

lunar mapping coordinate system, if the "true" values come from some

coordinate system other than the mapping system which is being im-

proved, it would of course be necessary to put into the equations of

condition, terms for the unknown parameters of the rotation and trans-

lation matrices needed to transform from the other system to the map

system.

Meanwhile, about all that is possible is to tie landmarks whose co-

ordinates are given in a lunar mapping system IIIb, to the system IIIa:

The tie can be performed either (i) by observing the landmarks from the

CSM, or (ii) by observing the CSM from the ground at a location that is

known with respect to at least some mapped landmarks.

The first possibility can be carried out by determining the direction

of a landmark from the CSM with multiple sightings with the SXT, using

the stars as reference points. The potentialities of this method are ex-

plored in considerable detail in Section XI of this report. The first

possibility can also be carried out by overlapping photographs taken on

the Lunar Orbiter, as described in Section X.

The second possibility, consisting of photographing the CSM from

the landing site against the background of stars, is discussed in Sec-

tion IX. Sightings from a single point on the ground, however, will

only determine the coordinates of that point with respect to the CSM

coordinate system Ilia; in general, it requires three points to make a

complete datum tie. If the relative scale of the two systems can be

ignored, then one point and two directions are sufficient. Problems

connected with supplying this kind of information are the subject

matter of Section VIII, in which possible ways of carrying out local

ground surveys are explored. As will appear, the scope of such sur-

veys around a single landing site is limited.

5O

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I



!
I
!

I
I

I
I

I
I

I
I

I
I

!
I

I
I

I

I

From the CSM orbit, only those landmarks will be accessible to

observation that lie within a zone bounded by two small circles of the

lunar surface, one on each side of the subsatellite track, parallel to it,

and some 600 km ground-arc distance from it. In addition, only those

landmarks that lie in the sunlit hemisphere, and possibly a few in bright

earthshine, can actually be sighted on. Obviously then, a coordinate tie

based on connections in range and direction between landmarks and CSM posi-

tions will be a tie between the CSM coordinate system Ilia and a sample of

map system Ill'b; not of the entire map, but the map system as represented

imperfectly by a selection of landmarks accessible to observation. The

origin and axes of the mapping system as obtained from the mean of the

positions of the measured landmarks can be expected to differ from the

origin and axes as defined by the mean of all the landmarks. For ex-

ample, in an equatorial zone of accessibility, let us take 400 m as a

typical value of the error in the z-coordinate of the landmarks in a

direction parallel to the axis of rotation. As we shall see later, the

estimated standard deviation of landmark fixes with the SXT relative to

the CSM positions will range from possibly as low as Ii m to as high as

70 m; we take 30 m to be a typical value. This is small in comparison

with the landmark position error, and will be ignored in this illustra-

tion. If i00 mapped landmarks are fixed with the SXT, the error of the

z-component of these landmarks, which serves as a zero-point for this

sample of the mapping coordinate system, can be expected to be about

400/i00 I/Z m, or about 40 m.

5. Errors of Landmark Coordinates with l_espect to their Own

Mapping System: Type E 4

Table III-1 above shows both the current and projected estimates

of the standard deviation of landmark coordinates in several existing

mapping systems. A landing site selected on a photograph can be

located with respect to neighboring landmarks with something like

the same precision. With respect to the map system IIIb as a whole,

one might expect somewhat greater precision, if the site can be tied

on the photograph to a number of neighboring landmarks; but this

expectation is actually unfounded unless the landing site is seen with
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greater resolution than the average landmark. In other words, the

landing site itself has a certain fuzziness, due to the low resolution available

in earth-based photographs, and this fuzziness is certainly as great as it is

for any other landmark; in fact, it will probably be greater, because the

landing sites are generally smooth and relatively featureless.

6. Direct Ties Between Earth and Moon

The placement of beacons on the moon of course provides the means of

making direct ties between systems I and II directly to IIlb, bypassing the

steps II-IIIa and IIIa-IIIb altogether. This subject is discussed in Section V,

to the extent that is appropriate to the Apollo mission. For radio transponder

beacons, the direct tie errors are similar to those for the ties between II and

Ilia described above. The capabilities of lasers are developing so rapidly

that it would be meaningless to try to predict what their capabilities will be

four or five years hence; but they have the potential of providing the best

means of making direct ties between the earth and the moon.

7. Summary of Errors in Location Affecting the Capability of Landing

a Vehicle on a Selected Site

Although interplay of the errors in the chain from topocentric tracking

coordinate errors (Type E l} to landmark location errors in a lunar map (Type

E4), is extremely complex, and their magnitude varies at each step over a

considerable range that depends on the geometry of the circumstances, etc. ,

we shall attempt to summarize on the basis of average to optimistic expec-

tations, and see what conclusions we may reach.

Assumptions:

-1/2
I: 1000 m per sample, l sample per rain, I000 t

of observation. (Type El)

II:

m in t mins

Direct effect, 50 m; indirect effect on transverse position biased for

each pair of stations, but approximately random from pair to pair,

500-Z000 m per pair. {Type E_)
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(1} No bias, hours to days of tracking, a and sinI separable:

20-50 m (based on BB estimates}.

(2) No bias, shorter duration tracking, a and sinI not separable,

based on range and range rate alone: 250 m.

(3} Bias, from selection or indirect errors from II, regardless of

duration of tracking up to 1-2 weeks: 1-4 kin.

Note: Elsewhere in this report, we have adopted for the uncertainty of

position of the CSM in selenocentric orbit, the assumed value, 100 m.

IIIa-IIIb: SXT sighting errors: 10 to 70 m/landmark. (Type E3)

IIIb: (I} As represented by 10landmarks well distributed, present con-

ditions: 150 m. (Type E4}

{2} As represented by 10 landmarks, projecte d conditions: 100 m

100 landmarks, projected conditions: 30 m.

Location error of landing site with respect to Hi-b, today: 500 m.

Location error of site, lunar Orbiter photographs: 80 m.

The overall accumulated effect may be estimated as follows:

From _ - no separate contribution, because effect is already included
in Ilia.

Optimistic Average
II - Direct effect only: 20 50

Indirect effects not applicable if
range and range rate are used,
except in IIIa below.

IIIa

IIIa - IIIb

HIb

Site Location Error

Root Sum Square

20-50 250

I0 30

30 1 50

80 5 00

i00 m. 5 90 m.

On this basis, there appears to be reason to hope that information will be

adequate to guide a vehicle to a chosen landing site, provided ties have already

been carried out between Systems Ilia and IIIb, either by lunar Orbiter photo-

graphs or SXT measurements.
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E. REMARKS ON THE ESTABLISHMENT OF A SELENODETIC DATUM,

AND SELENODETIC SURVEYS

The establishment of a full selenodetic datum, in a sense analogous to

the geodetic datums, requires:

Io A system of astronomical coordinates, based on the moon's axis of

rotation, hence a means of establishing the position of the lunar ce-

lestial poles referred to the stars (see Section IV), and a means of

determining selenocentric astronomical coordinates (see Section VI).

When combined with (Z) below, the deviation of the vertical is ob-

tained. The deviation of the vertical and gravity anomalies (see

Section VII) are related through Stokes theorem, and thus there is

value in measuring one to obtain the other, if both cannot be done.

Zo A system of selenodetic coordinates. Classically, these would be

spherical or spheroidal coordinates on a standard reference sphere

of specified radius or spheroid with specified semiaxes that best fits

the lunar surface, either the average of the lowest regions, or

simply the average of all regions. The classical system would re-

quire for its definition: (i) a datum point, with assigned selenodetic

latitude, longitude, and height above or below the reference sphere

or spheroid; and (ii) an azimuth from the datum point to another point

of known location. (See Sections VIII, IX, Appendices C and E.) The

selenodetic coordinates of any chosen point would now be calculated

from the datum point, the arc length between the datum point and the

chosen point measured along the reference sphere or spheroid, and

the azimuth of that arc. The coordinates of the datum point and all

the other points with it would then be adjusted so that the average dif-

ference between astronomical and selenodetic position of all points

on the moon's surface would vanish. (For details of classical geodesy,

see any standard textbook, e.g., G. Bomford, Geodesy, Zd Ed.,

Clarendon Press, 1962.)

Although any system needs at least one datum point, a scale, and defini-

tion of its orientation, it is debatable whether it is necessary to follow these

classical procedures slavishly when setting up a selenodetic coordinate system.

The classical system is at least partly the result of historical development, in-

fluenced strongly by features of the terrestrial environment which do not apply
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on the moon, namely the presence of an atmosphere that refracts light rays.

The chief effect of the earth's atmosphere is, of course, to bend light rays

in the vertical plane of the ray. Although this effect is fairly predictable for

lines of sight inclined by more than i0 ° or 15 ° from the horizontal, it is

quite unpredictable for nearly horizontal rays, easily introducing errors of

several minutes of arc. Most lines of sight in surveying are of course nearly

horizontal, and hence severely affected. (Refraction can also occur in the

horizontal plane, i.e., a bending of the light ray in the horizontal direction,

in regions where the atmospheric density has horizontal gradients. These

arise principally from the local differences in the temperature of the air

produced by different kinds of surface -- water, bare rock or earth, wooded

areas, snowfields, etc.)

In the earliest surveying which can be called geodetic -- in Holland and

France in the 17th Century -- triangulation was carried out in three dimen-

sions; that is, the actual angle between two stations A and B subtended at C

was measured at C in the plane of the triangle ABC, not in the horizontal

plane. In flat country and with small triangles, this makes little difference;

but in terrain where the differences in elevation of A, B, and C become

great enough, the vertical component of the measured angles is affected by

atmospheric refraction. This troublesome phenomenon led to the practice

of separating the surveying into two parts: (i) triangulation based on hori-

zontal angles, using the longest lines of sight possible; and (ii) leveling,

in which differences in elevation above an arbitrary reference surface are

determined by running short lines of sight unlikely to be greatly affected by

refraction. Both (i) and (ii) required the adoption of a reference surface:

in (i) the surface is needed to project the angles and distances on, and in

(ii) it is needed to refer elevations to. Terrestrial oceans afford a ready-

made basis for setting up reference spheroids, which are imaginary surfaces

that best fit the true sea level surface, either on a regional basis or a world-

wide basis.

However, the moon has neither an atmosphere to cause refraction, nor

seas and oceans to use as a reference for elevations. Certain simplifications

would result, if the positions of points on the moon are simply expressed in
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three-dimensional coordinates in the first place, and there seems to be no

reason not to do so. These coordinates may be either rectangular or spheri-

cal. Computations, e.g. , distances and directions between points, are

usually easier to carry out in rectangular coordinates. On the other hand,

spherical coordinates are more useful in navigation on or over the surface,

because of their ready interconnectionwith celestial coordinates. A sphere

of constant r can be adopted as a reference surface for local elevations, but

the sphere would be only a convenience, and not an essential part of the sys-

tem, as are the reference spheroids in terrestrial geodesy.

Spherical coordinates also bear a strong resemblance to classical

geodetic coordinates, which might give a feeling of familiarity and com-

fort. Geodetic coordinates are oblate-eUipsoidal. This arises from the

fact that to a second approximation the earth is an oblate spheroid. The

oblateness of the moon is so small and uncertain that there is no advantage

in adopting spheroidal coordinates; and the same can be said for the el-

lipticity of the moon's equator.

All that is really required is to locate points on the moon's surface with

respect to each other in a three-dimensional coordinate system, and to re-

late the system to the directions in space. For the sake of both convenience

and elegance, the origin of the ideal selenodetic coordinate system should be

at the center of mass of the moon, and its principal axis aligned with the axis

of rotation of the moon, i. e. , it should be Type IIIa. The barycentric

orbital coordinate system of a particular orbiter could then in general be

made to coincide with the ideal system by small rotations around a common

center. Generally, no very significant change in scale would be required

if the scale of the ideal system is built up in the first place from orbits

based on tracking data, and if landmarks are tied to these orbits; in the

case of a particular orbit, the relative change in scale will be the small

quantity Ea/a, about 1:105 for well determined orbits and possibly I:104

for orbits tracked only 3 days. Map coordinate systems can be made to

coincide with the ideal selenodetic system by (I) rotations, expected to be

of the order of 0.01 ° to 0.02 °, the present estimated uncertainty in the

position of the lunar poles; (Z) a translation of possibly several hundred
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meters, to bring the center of figure to the center of mass; and (3} a

change in scale, of possibly as large as 1:2000, the present estimated

uncertainty in the radius of the sphere that "best fits" the lunar surface.

The question of establishing a definitive scale for an ideal selenodetic

system still remains largely open. It is to be hoped that the scale es-

tablished by the semi-major axis of orbital coordinate systems from

tracking data will agree reasonably well with the scale established on

the surface by the baseline of the local survey or by the proposed surface

ranging techniques. During the early Apollo surveys there will undoubtedly

be discrepancies between the two systems of scale which will need to be

reconciled, using standard statistical techniques which take the errors of

both systems into account.

The methods described in this report show how an approach to

establishing an ideal selenodetic system can be made or at least begun on

the Apollo mission, although the precision associated with these first

steps is not up to first-order geodetic standards.
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SEC TION IV

DETERMINATION OF THE LUNAR POLE

A. INTRODUCTION

Knowledge of the direction of the moon's axis of rotation in celestial

coordinates would provide the basis for selenodetic astronomy that could

be performed in the same manner as geodetic astronomy on earth, in that

it would simplify determination of astronomical coordinates for any point

on the moon's surface. Once a selenodetic datum and network is established,

the differences in the selenodetic coordinates of a point on the moon's sur-

face and the astronomical coordinates of the same point is a measure of

the deflection of the vertical at that point. Knowledge of these deflections

would permit correction of astronomical azimuths in carrying forward

selenodetic networks, as well as being the basis for deriving geophysical

information about the internal mass distribution of the moon.

In addition, knowledge of the direction of the moon's axis of rotation

would permit determination of the astronomical position at the landing site.

This would furnish an improved zero-point datum for a system of seleno-

centric latitudes and longitudes in a selenocentric system which would

better fit the moon's real axis of rotation (see Section VI). It would make

possible a determination of the wanderings of the lunar pole, which would

also yield geophysical information about the distribution of mass and in-

ternal rigidity of the moon.

Observations from the earth of beacons emplanted on the moon, how-

ever, may be more effective than photographic observations from the lunar

surface, at least until the latter have been repeated a number of times, well

distributed over the complete lunar rotation.

B. PROCEDURE

Location of the pole would be derived from photography obtained from

the precision frame camera as outlined in Section IX. The procedure is
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simple and will not be repeated here except to point out that it will be neces-

sary to take at least two sets of celestial pole photographs spread apart in

time as far as mission schedules and constraints will permit. This is be-

lieved to be approximately 12 hours, which will be adequate. It is essential,

however, that the relative positions of the camera with respect to the moon

be the same for all exposures. This can be accomplished either by not

allowing the camera to be moved or touched during the entire period, or

by making provisions to rectify the various exposures with respect to each

other. The latter procedure will probably be the most practicable approach.

A portion of the lunar landscape, which will appear on the lower edge of the

plates, could be used as an extended series of fiducial marks and serve this

purpose adequately, as long as it is clear which image of the horizon goes

with what star exposure.

The camera must point in the direction of the lunar celestial pole, which

is sufficiently well known for this purpose. In order to yield not only the

exact location of the lunar pole, but also the selenographic latitude of the

observing station, the camera must be carefully leveled and its scale well

known; so that the actual latitudes (i. e., the angular distance of the pole

from the horizon), can be computed from the measurements on the plate.

The balloon target provided in Section IX would serve this purpose.

C. ESTIMATION OF THE ACCURACY OF THE POLE'S COORDINATE

DETERMINATION

Appendix B reviews in detail the theory and mathematical equations

which lead to derivation of the lunar pole from the precision frame camera

photography and presents a brief error analysis of the results, as well as

indicating means of a rigorous error approach. For purposes of this study,

however, the abbreviated error analysis is sufficient. This shows that if

the two extreme exposures are approximately 12 hours apart, and a camera

of 150 mm focal length is utilized, as provided by the precision frame

camera, the pole can be determined within a standard error of 7 seconds,

which over a period of several missions would surely be improved.
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SEC TION V

USEFULNESS OF A BEACON EMPLACED ON THE MOON,

TO BE OBSERVED FROM THE EARTH

A. INTRODUCTION

The subject of emplacing a beacon on the surface of the moon has been

considered by scientists during the last six or eight years as a means of

furnishing a fiducial mark on the moon, the motions of which could be fol-

lowed over the course of time in order to determine the physical librations

of the moon better than they are presently known. Today, the coefficients

of the equations for the physical librations are known with uncertainties of

the order of 0. 01 ° to 0.02 °. Investigators interested in determining the

physical librations more accurately have been concerned almost entirely

with information that can be derived from the librations regarding the three

principal moments of inertia of the moon. In turn, some information about

the distribution of mass in the moon can be obtained from these moments:

degree of central concentration of mass; irregular distribution of mass,

indicating departures from isostasy, etc. For these purposes it is not

necessary to know the absolute location (i.e., selenocentric coordinates)

of the beacon or fiducial mark; it is only necessary to know how the mark

moves relative to its own mean position as a function of time.

The use of beacons has also been considered for the purpose of determin-

ing the distance to the moon, and its orbital motions, but present consensus

holds that these data can be obtained about as well without a beacon. Radar

determination of the lunar distance (NRL, etc. ) have borne out this surmise,

although the standard error of the radar results is of the order of _+ 1 krn.

Some of this uncertainty is due to the uncertainty in the radius of the moon

(1738 Kin), and some to an uncertainty in the velocity of light of about I: 106 .

There is obviously some merit, however, in marking an identifiable re-

ference point on the moon's surface for selenodetic purposes, coordinates

of which could be accurately determined by observations from the earth, to

be used a_ a datum tie, so to speak, between (i) selenocentric coordinates
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determined from the earth (such as the coordinates used to describe the

ephemeris of a lunar orbiter or the Apollo CSM), and (ii) coordinates re-

ferred to a lunar datum, however provisional. The question is, how well

can this be done with a beacon or reflector ?

Both optical and radio beacons have been considered. An optical beacon

could be observed for angular motions produced by transverse displacements;

it should be placed near the center of the visible hemisphere where librations

in longitude or latitude produce the largest transverse displacements for

both these degrees of freedom. The optical beacon would be placed near the

limb only to maximize the effect of librations in position angle. Radio bea-

cons for measurements of range or changes in range, should be placed near

the limb -- near the moon's equator for librations in longitude, and near a

pole for librations in latitude. Zibration in position angle cannot be deter-

mined from range measurements. Thus, other things being equal, it

would take twice as many radio beacons to do less than an optical beacon

can do. Furthermore, they would need to be emplaced in regions near the

limb where Apollo missions do not intend to land.

B. OPTICAL METHODS

If the beacon were observable as a point with standard astrometric

techniques -- i. e., if it looked like a star bright enough to photograph

with a telescope designed for astrometric work, it could be positioned in

celestial coordinates relative to the field of comparison stars with a pre-

cision of something better than l"/f, where f = focal length in meters. This

would give two components of a single position, which by itself would not con-

stitute selenodetic information. To yield selenodetic information, one of two

further steps is required.

First alternative: If such observations were repeated over a sufficient

period (of the order of one year) and the observations were representative

of the range of librations, then the variable or librational part of the co-

ordinates of the point could be separated from its average position with

respect to the center of the visible disk of the moon. Several observations

per night, for lO0 nights, would give a precision of the relative angular
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coordinates (right ascension and declination) of the beacon with respect to

the center of the visible disk of better than 0'.'i/f -- a great deal better if

the observations are well distributed and the variables well separated. This

corresponds to a precision (in transverse coordinates) on the moon's surface

of 190/f meters or better, which might be worthwhile if lunar maps do not

improve a great deal between now and 1969. To accomplish this result it

would be necessary to work out a fairly systematic cooperative observing

program with the operators of astrometric telescopes. Whether it would

be worth investing in additional astrometric telescopes to achieve this some-

what marginal result would depend on the value of the geophysical results to

be obtained from the librations: that is, the question should be judged on

geophysical grounds rather than selenodetic, since a selenodetic result

can be obtained from the second alternative, described below.

Second alternative: The selenodetic, selenocentric, or astronomical

coordinates of the beacon should be determined by operations conducted on

the moon's surface. The selenodetic coordinates would be largely arbitrary

in any early survey. The selenocentric coordinates could be determined by

observations of the orbiting CSM from the beacon site, or by observations

of the beacon (presumably near the LEM) from the CSM, by methods out-

lined in Section XI in this study. The astronomical coordinates could be

determined from the local zenith and lunar celestial pole, also as outlined

in Section VI. An element of arbitrariness, namely the selection of a zero-

point for exact lunar longitudes, enters into these results. In order to

eliminate ambiguities or uncertainties caused by librations, it would be

necessary to make the terrestrial observations of the beacon either at some

time for which the CSM orbit is well known (if selenocentric coordinates are

being sought), or during the time that astronomical observations are being

made by the LEM crew (if astronomical coordinates are being sought).

C. OPTICAL BEACON TYPES

Optical beacons must be objects that can be readily seen or photographed

from the earth. The following have been considered: mirrors to reflect sun-

light, corner reflectors for laser beams, and bright lights.
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I. Mirrors

Amirror can be spherical, plane, or a faceted sphere. A specular

spherical mirror would have a highlight of reflected sunlight, the bright-

ness of which depends on the size (radius) of the sphere. The 40-m

(130-foot) Echo balloon is an example of a spherical mirror, more or less

specular. It appears about as bright as a star of the 0th magnitude at a

distance of 1000 kin, and would look like a star of about 13th magnitude at

385, 000 krn. The limiting useful magnitude for telescopes used with Moon

Cameras L_7_7 is about llth, with a 10-20 sec exposure. Therefore, an

Echo-type balloon would have to be increased in area by a factor of approxi-

mately 6, or in diameter by a factor of 2. 5, in order to be useful; that is,

the diameter would have to be about 100 m. For balloons, weight is ap-

proximately proportional to area: this implies a weight of about 500 kg

(0.5 ton) which is, of course, prohibitive for the Apollo mission. Smaller

balloons could be used if larger telescopes were used with Moon Cameras

to observe them. If 30 kg is assumed to be the heaviest balloon beacon

that could be taken on an Apollo mission (although this is actually much

too large to be practicable), the weight and hence area would be diminished

by a factor of 16, and the brightness of the highlight reflection in propor-

tion, i.e., 3 stellar magnitudes. This would require a telescope of

4 x 30 = 120 cm aperture. The only telescope with this large an aperture,

possessing at the same time a large enough field with astrometric proper-

ties, is the new LISNO telescope at the Flagstaff station. In other words,

this is a remote possibility.

Consider the case of the plane mirror. The mean apparent diameter

of the sun is about 30', or 1800" of arc, so the (conical) solid angle sub-
2

tended by its disk is approximately 2.55 x 106 arc-sec The apparent

magnitude of the sun is about -26.4. Assume that a point-like reflection

of stellar magnitude 9.0 would be readily observable; this would be fainter

i014.than the sun by a factor of i.5 x Thus, a small patch of the sun's

surface (or mirror reflecting 100% of the incident light) that subtends a

solid angle (l. 5 x I014) -l times as large as the solid angle subtended

by the sun would look like a 9th magnitude star. The size of this small
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solid angle would be (Z. 55 x 108 2 14arc-sec )/1.5 x I0 , or (1.3 x 10-4

arc-sec) Z, or (0.65 x 10-9 rad) 2, which would be the equivalent of a mirror

on the moon 25 cmx 25 cm square. Such a mirror could easily be carried

on an Apollo mission. When the mirror is in sunlight (about half the time),

and if the sunlight strikes the upper reflecting surface (rather than the

underside), the mirror would reflect a conical beam about I/g ° in diameter

into space (i. e. , the angular diameter of the sun). This cone would have

a dimaeter of about 3500 km at the earth, slightly larger than the moon.

The cone would be swept around the moon's axis of rotation at twice the

rotation rate of the moon. For the present problem, we are interested

in the rate of rotation of the cone with respect to the sun, not inertial

coordinates. This rate is slightly variable, not so much because the

moon rotates (in inertial coordinates) at a very slightly variable rate

( = "physical libration in longitude"), which it does, but because the

phase angle of the moon with respect to the sun increases at a slightly

variable rate as a result of the moon's orbital motion around the earth

(and also, to a lesser degree, because both the earth's orbit around the

sun and the moon's orbit around the earth are slowly varying ellipses).

The average rate or rotation of the moon with respect to the sun is 0.213

tad/day. The rate of rotation of the cone of visibility of the reflection

with respect to the sun is twice as great, but from the standpoint of an

observer on the earth about half of this double rate is undone by the moon's

revolution around the earth. Therefore, the visibility cone sweeps past

the earth at 0. Zl3 rad/day = 0.0089 rad/hr = 3400 km/hr. (These are all

average values.) Thus, if the angle of the mirror were correctly set to

begin with, the reflection could be observed for about an hour at observing

stations along the center line of the path swept out across the surface of

the earth by the 3500-kin diameter visibility cone. The time is increased

by the earth's rotation, which carries the observer in the same general

direction as the cone. It is decreased for observers off the center line.

The geometry of the visibility cone, its intersection with the earth's

surface, and its behavior with time (motion, nearly periodic pattern, etc. )

is similar to those of eclipses of the sun (partial and total), or of occulta-

tions. In eclipses of the sun, the diameter of the penumbra is about twice
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the diameter of the visibility cone, and its speed across the earth's surface

about half as great. The relative shift of the moon in celestial latitude

from one eclipse to the next in the same cycle is about one-half that be-

tween analogous members of a series of visibility cone sweeps. The net

effect is to reduce the frequency of visibility sweeps to about one-half

the frequency of partial and total eclipses of the sun, which is of the order

of three per year from somewhere on the earth's surface. From any one

place, the frequency is much lower. Allowing for the effects of bad

weather, it would thus take several years, even with a number of ob-

serving stations, to build up a useful sequence of observations. This

might be acceptable, however, and the payload weight is greately to be

preferred over a large balloon-type spherical reflector.

A faceted spherical surface is really no more than a compromise

between a true sphere and a plane mirror, and constitutes an effort to

try to avoid some of the disadvantages of each. For example, a poly-

hedron made up of l-ft 2 (25 cm x Z5 cm) faces, each forming a dihedral

angle of approximately 1/4 ° with each of its nearest neighbors, would

reflect a set of almost overlapping 1/2 ° cones into space, each of which

looks like a 9th magnitude star from the earth, and only one of which

would generally be visible at a given moment, and at most 2 or 3 if the

cones overlap. The number of such faces, and hence the size of the

polyhedral surface, would depend on the percentage of the time it seems

desirable to be able to observe the reflection. There is probably little

sense in trying to guarantee that a reflection would always be observable,

anywhere on earth. To do so would involve blanketing a strip, as seen

from the moon, + 8 ° each side of the moon's equatorial plane (some-

what larger than the moon's total optical plus physical libration in lati-

tude) and 360 ° in selenocentric longitude. This would require a faceted

spherical surface zonal segment, bounded by two latitude circles at

about + 4 ° and by two meridians 90 ° apart. Since each facet is tilted

I/4 ° with respect to its neighbors and is about 1/4 meter in diameter,

the general curvature of the sphere to which the facets should conform

is about l°/meter. The entire array would thus be an arch, 8-I0 meters

wide, and 90-I00 meters along the 90 ° of the arch. This may be feasible
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some day, but is entirely too cumbersome and big to pack on an early

Apollo expedition.

On the other hand, this type of analysis makes it possible to estimate

how large a polyhedral surface would be required, once it is decided what

kind of observational coverage is desired, i.e. , what fraction of the maxi-

mum possible time, and over what geographical distribution. (The latter

will be largely uncontrolled, and will be a function of the time coverage. )

Z. Laser Corner Reflectors

A more desirable approach (might be to place)a corner reflector

that would reflect a laser beam from the earth. Although mirrors have

the advantage of being observable by existing telescopes, developments

in lasers are such that by the time of the Apollo missions or shortly

thereafter, a laser of reasonable power requirements could get a good

return from such a reflector. In addition, the laser could provide range

which would strengthen the solutioms. During the meeting held at NASA

Headquarters on December 4, 1964, on the subject of "Applications of

Lasers to Lunar Surface Science and Technology", Hunt and Iliff of Air

Force Cambridge Research Laboratories reported considerable success

and progress utilizing reflectors as small as I0 cm in aperture over

considerable distances. It appears that a collapsable reflector which

would expand to not more than 3 feet in aperture size, and would give a

much larger cone of observation than any practicable size of mirror array_

would be effective and most desirable. Further information relative to

type and size can be obtained through AFCRL.

3. Bright Light Beacon

The power required to make a light bright enough to be observed by

batteries, a system of solar cells, or nuclear power supply, would make such

a system much too heavy to take on an early Apollo mission. A study of any

other means of planting a suitable bright-light beacon on the moon is of course

outside the scope of this report.
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D. RADIO METHODS

In the following, it is assumed that the beacon is a transponder, rather

than a continuously radiating source. This provides two advantages not so

easily obtained from continuous sources: (1) precise frequency control is

dependent only on phase-lock circuits, not on long-term stability control;

(2) ambiguities in phase can easily be eliminated.

I. Directional Information

The directional information that present-day radio beacons and special

antennas can supply is, of course, vastly inferior to even rather crude opti-

cal information. It is conceivable, however, that more precise directional

information could be obtained by interferometric techniques, using a long

baseline {comparable to the earth's radius in lengthl and a frequency not

overly susceptible to refractive effects in the ionosphere or the circum-

terrestrial plasma. Even so, it is doubtful whether the technique would be

competitive with optical techniques.

If a frequency in the cm-wave region be chosen (say, S-bandl and a

baseline of the order of 1000's of km be used, the theoretically attainable

directional accuracy would be of the order of one to several arc-seconds.

A minimum of three stations would be required, in order to obtain the

direction to the beacon in two degrees of freedom, stations A & B on an ap-

proximate east-west line, and station C approximately north (or south} of

station A {or B}. The stations must be tied with communications links good

enough to allow the measurement of the phase difference of a signal from

the beacon as it arrives at the two stations. The stations must be tied geo-

detically with an accuracy better than 1:2 " I05; otherwise the directional

information would be degraded. Furthermore, even if these technical

difficulties were surmounted, the refractive effects of the troposphere,

ionosphere, and circumterrestrial medium might still be greater than

several arc-seconds. Finally, even if both the technical and environ-

mental difficulties were overcome, the result would still be no better than

rather crude optical results, and so the method does not seem to be worth
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the trouble, at least for the present purposes. (Precision all-weather

tracking of a space probe is another matter; here interferometric tracking

of the type outlined above might make considerable sense. )

It has also been suggested that a beacon, or better yet, several beacons,

could be emplaced on the moon as part of a navigational system. The signal

from the beacon would be radiated directly to a tracking station on the earth,
and also to a transponder on a lunar-orbiting spacecraft, which would in turn

relay a second signal to the same terrestrial tracking station. The phase
difference between the direct signal and transponder-repeated signal, con-

verted into a difference in length between the direct line station-to-beacon

and the broken line station-to-spacecraft-to-beacon, would place the space-

craft very accurately on an ellipsoid, with the tracking station at one focus

and the beacon at the other focus. A description of how such data might be

used to obtain positional information lies beyond the scope of this study, ex-

cept to say three things: (I) a judicious placement of several such beacons

can give completely self-contained positional information; (Z) the use of

even one such beacon, in conjunction with ordinary Doppler tracking data

for the Apollo or Orbiter, would under some circumstances considerably

strengthen positional information about the Orbiter; (3) the same set-up

can be used in reverse, to locate the beacon on the surface of an ellipsoid

with the station at one focus and the spacecraft at the other; this would be

useful for tying the beacon to the geocentric position of the spacecraft, as-

sumed in this instance to be known from the tracking data. It is only case

(3) that might be interesting in the present context.

2. Range Information

Radio beacons come into their own for the determination of distances.

The main points to be borne in mind in the uses suggested below are: how

to provide stability in the reaction time of the transponder, and a long life-

time in a remote beacon unattended for periods of the order of a year. (But

see M.S. Hunt, "A Prototype Lunar Transponder", JGR 69, 2399, June i,

1964, which describes a simple transponder that appears to meet all require-
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merits implied in this discussion. It weighs i. 8 kg without batteries, can

withstanda 3000-g shock, and is built to last for a year or more.}

(a) Case I: Near the center of the moon's visible face. A beacon in this

region would be useful chiefly for determining the distance to the moon more

accurately than is known today. This would depend, however, on being able

to calibrate the scale to better than 1:400,000, which is roughly the present

relative uncertainty. The following assumptions can be made:

l° Present-day radar transponders, like the SECOR system used by

the Army Engineers on satellites for geodetic purposes, or the NASA

S-band range and range-rate system on the IMP satellite (which will

also be used on the geodetic satellite GEOS) give ranges with an

internal consistency of instrumental performance corresponding to

+ 15 meters or better, and range-rates to a few cm/sec by two-

way Doppler techniques. The constant bias due to an uncertainty

in the reaction time of the transponder circuit is of the order of
5

I0 m. Scale errors could probably be calibrated to 1:5 " I0 It

is further assumed that transponders can be designed to operate

over translunar distances with this same kind of capability.

2. Corrections for propagation errors introduced by the ionosphere

and the circumterrestrial medium can be calculated with an un-

certainty no worse than 1-2 meters. The chief source of the un-

certainty would be a lack of knowledge of the total electron content

along the ray-path. Even if it were ignored altogether, at 5000Mc/s

the error could hardly exceed + I0 m.

3. The uncertainty in the value of the velocity of light, now I:106 or

somewhat worse, will be improved. Whether it is or not, is of no

great moment, however, because the present radar-based distance

to the moon and geocentric (or topocentric) distances to circum-

lunar orbiters based on tracking data will all be affected by the

same error. This statement is also true for item (Z) above.
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As noted before, a beacon near the center of the moon's visible hemi-

sphere will not be much use for determining librations because librations

do not appreciably affect the distance to points in this region.

(b) Case II: Near the limb, at low latitude. A beacon in this position

would be useful for determining the distance to the moon, as in Case I above;

but in addition, librations in longitude (both optical and physical) would have

a maximum effect in varying the station-to-beacon range about a mean value.

The present uncertainty in the orientation of the moon on its axis, and hence

in its libration, is of the order of 0.01 ° corresponding to a linear displace-

ment of a point on the surface of about 300 meters. With the same assump-

tions made under Case I, the values of the librations and their pattern with

time could be better determined. Actually, the conditions laid down under

the assumptions in Case I can now be relaxed somewhat, because for libra-

tions we are concerned not so much with absolute distance (range) measure-

ments, but with variations in range. One can assume that the velocity of

light does not vary, and so can disregard assumption (3). The propagation

delay time is a function of the total electron content along the path, which

does vary. The variation is to some extent determinate (perhaps to a factor

2) from measurements of electron density in the ionosphere and interplane-

tary space. The corrections calculated on the basis of measured electron

densities will thus vary; they would usually be only of the order of l-Z m,

and their range of variation is of the same order of magnitude. The errors

of these calculations, which are roughly proportional to the corrections

themselves, also vary, but their absolute range of variation is very small

indeed -- of the order of a few centimeters.

Placement of a radio beacon on the limb of the moon would be com-

paratively more difficult than placement at the landing site, which is assumed

to be within a few 10's of degrees of longitude of the center of the visible

hemisphere. It should again be noted, however, that for librations the ab-

solute position of the beacon on the moon's surface is of no great importance;

the important thing is to be able to measure the variations in the station-to-

beacon range with acceptable accuracy; therefore, for landing the beacon on

the surface, a c.e.p, of 100-Z00 km is quite acceptable. It seems possible
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to eject the beacon in a hard-landing-proof package, from either the LEM or

the CSM, so as to land near the limb. Once landed, however, its east-west

position needs to be known to about 3-6 krn, or its longitude needs to be known

to 0. 1° to 0.2 ° . If the range to the beacon is D, the radius of the moon is R,

the longitude of the beacon measured from the mean limb toward the observer

is _ , and the (semi-)amplitude of the libration in longitude is L, then the

extreme difference in range clue to librations in longitude is given by the ex-

pression, /k D=R. [ sin( _+ L) - sin( _ - Z)_ = 2 }% cos2sinZ. The un-

certainty in /k D due to an uncertainty in longitude d _ is given by

___ ( /% D) = (dD/dL) " dE = -ZR sinL sin _ d_. With R = 1738 krn, L = 6.5 °

(a rough mean value), sin L = 0. Ii, and sin _>0. ii (so that the beacon will

never be turned completely over the horizon) but smaller than, say, 0. Z0,

then E_ ( /% D) would lie in the range 31" d _ to 57 d _ krn, depending

on the value of _ . Since the present value of/k D is known with an un-

certainty _ of 300 m, to effect a worthwhile improvement one should

shoot for, say, 100 m. This leads to d _ - 1/300 radif sing = 0. Ii, and

d_ = 1/600 radif sin _ = 0.20. These values of dR correspond to un-

certainties in the east-west position of the beacon of 6 krn and 3 km respec-

tively. There seems to be no practical reason why this accuracy cannot

be achieved.

(c) Case Ill. Near the north or south pole of the moon. Similar argu-

ments can be given concerning the placing of a beacon near a lunar pole in

order to determine the libration in latitude more exactly than it is known

today. These arguments therefore need not be repeated in detail. The

placement can be done only from a circumlunar POlar orbit, however.

(d) Discussion. Several comments should be made concerning the

evaluation of librations in Cases II and III:

I. The total true libration in both latitude and longitude is, as noted

before, a combination of optical and physical librations (see any

issue of the American Ephemeris or the Explanatory Supplement

to the Astronomical Ephemeris and the American Ephemeris and

Nautical Almanac, H. M. Stationery Office, 1961, for greater
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detail). Nearly the entire amount is accounted for by the optical
libration, which ranges up to about 8° in longitude and nearly 7°

in latitude. (In addition to the true optical libration, there is an

apparent (parallactic) libration due to the offset of the observer
from the line connecting the centers of the earth and moon, the

maximum amplitude of which is about 1°, and which depends on

the location of the observer and varies in phase with the hour

angle of the moon. We shall leave this out of further account,
because its magnitude can be calculated to l:105 and its effects

removed from the observations. )

The optical librations are of no particular physical interest; it is

the physical librations that supply information on the mass distri-

bution in the moon's body. The physical librations are small

quantities in comparison with the optical librations. (For a

simplified mathematical treatment of the main features of libra-

tions, see Fundamentals of Celestial Mechanics, J. M. A. Danby,

MacMillan Co., 1962: chap. 14. ) The principal term, with by far

the greatest amplitude, in the expression for the physical libration

in longitude has a period of a year and an amplitude of about 0.02°;

the principal term in latitude has a period of nearly 6 years and an

amplitude of about 0.04 °. Both librations have many harmonics

of small amplitude. One term of great interest, because it gives

rather direct information about the ellipticity of the moon's equa-

torial section ("frozen tidal bulge") which is the subject of much

dispute, is the free oscillation term in longitude, caused by the

torque exerted by the earth on the moon as it swings east and west

of its mean position with the period of the optical libration. This

term is small and ill-determined at present. The optical libra-

tions have the same periodic terms in general as does the moon's

geocentric motion, with a principal term of one anomalistic month

(perigee -to -perigee).

Solutions for the amplitudes of all periodic terms of both kinds

of libration can be obtained in principle using only observational
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data on the selenographic latitude and longitude of the center of the

disk, and the position angle of the moon's axis of rotation (or any

equivalent of these quantities). In practice, however, it would be

difficult to obtain correct values of the amplitudes of the physical

librations from the motions of a single point because they are

small differences of much larger quantities, (total libration) minus

{optical libration), and because some of the harmonics of the optical

librations are comparable'to the entire physical libration in ampli-

tude and period. Therefore, the best way to obtain the amplitude of

the physical librations from a single point seems to be as follows:

first, calculate the optical librations, which can be done from the

known orbital motions of the moon, under the assumption that

the moon rotates uniformly in rate and direction of axis with

respect to inertial space; and second, subtract this quantity

from the observed libration. This would give the departure from

uniform rotation, which is of course the physical libration. The

variations in the motions of the moon are known with uncertain-

ties of about + 0.2" in angle {from occultations, Moon Camera

observations, etc.) and about i00 meters in distance. This latter

figure is obtained from the uncertainty in the mean distance a

which is known to about i kin, multiplied by twice the eccentricity

e = 0.05... the quantity 2ae being the difference between apogee

and perigee distances. The eccentricity e is known to a large

enough number of significant figures that it introduces no signi-

ficant additional uncertainty into the product 2ae.

The angular uncertainty + 0.15" corresponds to an uncertainty of

position on the surface of the moon of about 1.3 meters, so can be

effectively ignored, in comparison with the + 100 meters or so

arising from the uncertainty in the distance to the moon. It is

now necessary to make assumptions about the behavior of the

errors in the transponder ranging system. Let us assume that

they are of the following three kinds and size: (1) an accidental

error of + 15 m in range and + 0. 1 m/sec in range rate; (2) a

constant instrumental bias error {irreducible residual of cali-
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bration errors) of + i0 m; (3) a scale error of 2:106, most of

which is constant and contributed by the uncertainty in the value

of the velocity of light, but a small part of which is variable

and due to the peculiarities of the timing circuit. There is in

addition, the propagation error from the intervening plasma of

+ 2 m. The range in variation of the measured distance to a

point on the moon would thus be subject to a total variance of

(15)2 + (i) 2 + (4. I" 107 x 2"10-6) 2 + (2)2 meters 2 = (84 meters) 2.

Since the uncertainty in the calculated effect of the optical libra-

tions and variation in the distance to the moon has been assumed

to be + i00 m, the resulting uncertainty in the physical librations

calculated from the difference, (measured total libration) minus

(calculated optical libration) would be (I002 + 842) 1/2, , or +130 m.

This displacement subtends 15" or about 0. 004 ° at the moon's

center.

o

The estimate, 0. 004 , is to be compared with the present un-

certainty of about 0.01 °. (We were looking for an improvement

from + 300 m to + 100 m to make the effort worth considering.)

The improvement in our knowledge of the amplitude of the physi-

cal librations would be better than the factor Z. 5 indicates, how-

ever. To begin with, the +_ 0. 004 ° is a more or less "instan-

taneous" value; but one would expect to accumulate a large number

of data over many lunations, so that the accidental effects would

tend to be smoothed to a much lower value. Then, instead of

using a standard value of the distance to the moon to calculate the

effects of the optical librations, one could use the measured

distances themselves. The principal sources of error would now

be the scale factor error in the measured distance. We have

treated this error as if it were accidental, when it is really sys-

tematic, but unknown. Its effect on each of the two terms of the

difference, total measured libration minus calculated optical

libration, would be the same, and would cancel out in the dif-

ference. What this amounts to is using the raw range data as

a function of the time to solve for the followii_g unknowns: (1) the
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entire set of parameters for the physical libration, but (2) only

the mean distance to the moon for the parameters of the optical

libration. This is not the same thing as treating both librations

as entirely unknown, which was already counterindicated in sub-

section (2) above.

The difficulties involved in sorting out the variation in range due to

the physical librations and that due to the eccentricity of the moon's

orbit can be largely avoided by placing beacons at opposite limbs --

east-west for librations in longitude, and north-south for latitude.

(Three beacons, roughly IZ0 ° apart in position angle, would be suf-

ficient to determine both librations very well. ) The reason is

obvious: The gross effect of the eccentricity of the moon's orbit

on the range to all points on the moon's surface is the same, i. e. ,

the sum of many periodic terms, but all in phase. The effect of

librations on any point on the moon's surface is the sum of a

different set of periodic terms, but the phase is opposite for

points on opposite limbs. The two effects can now be separated.

Then the effect of optical librations can be rather exactly cal-

culated (within the limits of the scale factor error which affects

everything alike) and removed; and the remaining residuals

used to solve for the physical librations.
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SECTION VI

DETERMINATION OF ASTRONOMICAL POSITION

AND REFERENCE AZIMUTH OF THE LANDING SITE

A. INTRODUCTION

As stated earlier in this report, observation of the astronomic position

and a reference azimuth at the landing site will accomplish the following in

whole or in part:

(i) it would furnish an improved zero-point datum for a system

of selenocentric latitudes and longitudes for any selenocentric

system, i.e., one that is a better fit to the moon's real axis

of rotation;

(ii) other sites can be occupied later and tied to the first site so that

intercomparison between astronomic positions and selenodetic

positions would give deflections of the vertical; and

(iii) even if subsequent sites are not tied to the first site by a common

selenodetic net, it would be useful to have astronomical fixes at

all sites in order to establish the relative positions of any two

sites with an uncertainty no,greater than the combined observa-

tional uncertainty of the astronomic fixes of the two sites, plus

the (unknown) differences of the deflection of the vertical at the

sites. It must be borne in mind that the 1/6 lunar gravity com-

pared to the force of gravity on the earth could well mean deflec-

tions several times those found on earth, assuming similar non-

homogeneity of the moon.

B. PROCEDURE

Determination of astronomical position and azimuth reference is pro-

posed to be accomplished by reducing the films from the panoramic camera

as described in Section IX, and will not be repeated here. It should be
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mentioned, however, that some experimentation on earth with the panoramic

camera system, including reading and reduction of the films, should be

undertaken in order to determine the number of panoramic pairs necessary

to yield the varying degrees of statistical accuracy of astronomic positions.

This would be the deciding factor in determining the number of panoramic

photographs to be taken. For the purpose of this report, it is assumed that

two sets of paired photographs will be taken.

C. ACCURACY OF RESULTS TO BE EXPECTED

Summarized in the paragraphs which follow is a preliminary error

analysis of results which could be expected from this photography. Ap-

pendix D provides a derivation of formulas that may be used in actual

practice in reducing the paired panoramic photographs.

I. Astronomical Position

The esti__mated error for astronomical latitude and longitude may be
Jo"

given by -_ A/ where n is the number of stars (images on the plate),

since each star contributes one degree of freedom to the system of equa-

tions, and 10" is assumed to be the error in the vertical scaling of the

plate. With 4 photographs and 50 stars per photograph, the error is I"

A realistic position uncertainty, however, must take into account the

standard error associated with the lunar pole. By taking i2-hour time

lapse photographs of the polar star field on a single mission with a 150 mm

lens of 2 or 3 inch aperture, this error will amount to (i000/150)_ 7" (see

Section IV). This is the controlling error. The total error of astronomical

position will initially be 7"or about 60 m as measured in the lunar surface.

As additional pole determinations are made on subsequent missions the posi-

tion of the pole will become refined and the error will be reduced. Eventu-

ally, it should be possible to calculate the position of the lunar pole with the

same degree of accuracy as is possible for the earth's pole now. At any

stage of this improvement in knowledge of the instantaneous position of the

moon's pole, the astronomical position of the camera can be revised.
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2. Astronomical Azimuths and Zenith Distances

If astronomical azimuth and zenith distances can be scaled to 10" in a

single photograph, the azimuths and Zenith distances to the same object in
N photographs would be in error due to plate scaling errors by 10"/_/-N. To
this must be added the transverse error of the pole or 7", so the total errors

+ 50) I/2 _ I0". For layingIoo

in azimuth and in zenith distance will be ( A/N

out a local triangulation network, estimates of angular measurement un-

certainty between two objects is Jo"_/_ or i0" since the pole error will
/V

cause a systematic error in the orientation of the whole net and will not

affect angular relationships between stations of the net.
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SECTION VII

USE OF GRAVITY OBSERVATIONS FOR SELENODETIC PURPOSES

A. INTRODUCTION

When ground surveys of extensive parts of the moon's surface eventually

become possible, it will be desirable to make gravity surveys to (1} measure

anomalies in the moon's gravitational field to obtain data pertinent to the

internal mass distribution, and hence the physical structure of the moon; and

(2) obtain data useful for the reduction of high-precision mapping, i. e. ,

deflections of the vertical, "selenoid" heights, etc.

But the immediate question is, is there any value in measuring gm' the

moon's acceleration of gravity at some one point on the moon's surface ?

There are two possible applications of such a measurement, which need not

wait for a wider-area survey to become useful:

1. To obtain a value for the moon's radius R independent ofm'

other methods of measurement; or

2. To obtain a single sample of a lunar gravitational anomaly,

which (if it is very different from zero) would suggest the

order of magnitude of other anomalies to be expected, and

perhaps provide a guide for future surveys.

It should be stressed that one cannot carry out both 1 and 2 from the same

data. The difference between 1 and Z is simply this: in 1 the measured value

of gm is assumed to be a representative value, unaffected by anomalies and

R treated as unknown; in 2, R is treated as known and value of gm com-m m

puted from it, with which the measured gm is compared.

B. MEASURE OF MOON'S RADIUS

Let us as sume that the error of the CSM' s position from terrestrial Doppler

tracking data is + 100 m with respectto the moon' s center ofmas s (the location of

which with respect to surface features is, however, not precisely known.
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As described in detail in Section XI below, the direction of the LEM,

sitting on the moon's surface, can be observed from the CSM with respect to

stars, using the SXT, with an angular precision of approximately Z0" per

observation. A minimum of three such observations with CSM-to-LEM lines

of sight crossing at large angles (60 ° - IZ0 °) would give a three-dimensional

fix with respect to the CSM orbital positions with precisions of about l:104.

If the minimum slant range CSM-to-LEM for these observations is Z00 kin,

the error ellipsoid of the LEM position with respect to the CSM orbit would

be about + Z0 m., but can be made smaller by repeated observations, or

observations at closer range, or both. Thus, the error of the LEM position

with respect to the moon's center of mass would still be about + i00 m. in

each dimension, with these assumptions.

The acceleration of gravity at the moon's surface g is given by two
m

• . ! -- _-

components: the grawtatlonal component, gm- GMm/Rm toward the center

of mass, where M and R are respectively the mass and radius of the

m m 2 R cos _ perpendicular tomoon, and the centrifugal component, gm= to m m

and away from the axis of rotation, where is the sidereal rate of rota-
m

tion of the moon in radians/sec. (The moon is taken to be a sphere, which

it is, within all existing errors of measurement. ) G is the universal con-

stant of gravitation, 6. 670 x 10 -8 cm/sec Z per g/cm 2, and # is the seleno-

graphic latitude. Since gm= 10-5 gm" we may neglect gin" in this illustration.

From the foregoing, one then has R = (GMm/gm)I
/z

m , which can be

used to evaluate i% independently of other measurements of R m, given am

numerical value of GM and measurements of gm" The product GM wherem e'

G is the mass of the earth, is known to about 1:4 x 105 , although the relative
e

errors of G andM taken separately are considerably larger. That is because
e

the product GM can be obtained very precisely from the orbits of satellites

revolving around a body with mass M, but in the equations of celestial

mechanics the quantity M never occurs except in the product GM.

The product GM can be obtained either from the orbits of satellites
m

revolving around the moon (potentially a very accurate and powerful method,

but not yet achieved), or from GM multiplied by the mass ratio M /M .
e m e

This ratio, 80.3Z -I is known to about one in the last significant figure, or
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1:8 x 103 . Since this error is much larger than the relative error in GM
e'

it can be taken to be the relative error of GM . The relative error of
1/2 m

(GM m) would then be 1:16,000.

Gravity meters designed for terrestrial use measure relative values of g

{referred to some standard location and conditions) with great precision.

With careful calibration and with short time durations, uncertainties due to

the drift of the meter are minimized, and errors can be kept well below

1 milligal (1 gal = 1 cm sec-2). The acceleration of gravity on the moon is

approximately 164 gals {about 1/6 the terrestrial value), so that instruments

designed to work on the moon must be calibrated in some way not yet tested.

It may be possible to lay the meter nearly horizontal in order that it would

react only to a component of the earth's field. Assuming that calibrations

performed in this way would be good to only __+ 10 milligals, then the relative

error of a measurement of lunar gm would be 1:16,800, and for (gin)1/2 it

would be 1:33,000. {These questions are treated in greater detail in

subsection D below. }

The uncertainty in R due to an uncertainty of 1:8,000 in GM
m m

_R = _R /_ {GMm}'_GM = 1/ZR _GM = 106 m.
m m m g m

then is

The error in R due to an error in g of 10 mgals is
m

Z

_¢Rm = 3Rm / C)g._',_.g = -GMm/ZRg _'-'g = -51 m.

The total uncertainty in R m would thus be about 120 m, quite comparable to

the error associated with the value of 1% derived from the CSM orbit and
m

LEM sightings. This means that if one assumes that the moon is free of

appreciable gravity anomalies, values of R obtained from surface gravitym

measurements could have intrinsically about as much weight as those obtained

by CSM tracking and LEM sightings.

The precision of the value R derived from surface gravity measure-
m

ments would be improved if the value of GM could be improved. There is
m

little likelihood that observations of the moon or its motion made from the
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earth during the next five years will greatly improve the existing value, but

accurate tracking of circumlunar satellites could very well do so.

The precision of measurement of lunar surface gm can be improved by

using a pendulum, if the visit to the lunar surface is long enough, although

there would not be much point in it until the accuracy with which GM is
m

known can be improved. Pendulums have the virtue of giving absolute,

rather than relative values of g, although they are not as sensitive to small

variations in g, and require several hours to yield accurate results. In

subsection D, it is implied that gm can be measured to about + 5 mgal

without too much difficulty. Then the relative error in gm is 1:33,600, and

for (gm)I/Z, it is 1:67,000.

C. SAMPLING SIZE OF LUNAR GRAVITY ANOMALIES

In this case, one would assume the value of R obtained from sources
m

other than gravity measurements (e. g. , CSM tracking and LEM sightings) as

a reference value. A "gravity anomaly" is the difference between the observed

value of the surface gravity at a particular location, and the value of surface

gravity computed for that same location according to some model. The only

model available, from the viewpoint of 1965, without any evidence for depar-

tures of moon's gravitational field from spherical symmetry - at least, no

real evidence for departures larger than the uncertainties themselves - is a
-2

spherical, homogeneous moon, with gm given by gm = GM R The smallm rn

term due to the moon's rotation can be neglected, as before. Thus,

Z
g = gobs - GM /Rm m

With the same assumptions as before regarding errors, the error of the first

term in the difference is + 10 milligals, and the error of the second term

+ Z8 milligals; so the error of the anomaly is + 30 milligals. This figure

would be reduced by an improved accuracy for GM . Even so, this preci-m

sion seems to be sensitive enough to detect anomalies of a moderate size, if

they exist. Anomalies of 50 mgals or less would arouse no great interest

and would prove nothing, if obtained at only one location on the moon's

surface, but an anomaly of, say, 100 mgals or greater would arouse great

interest.
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D. INSTRUMENTS TO MEASURE SURFACE GRAVITY

Gravity meters used in geodetic surveys or in geophysical investi-

gations measure the acceleration of gravity g relative to go at some

standard station. The best instruments can be read to 0.01 mgal, but are

accurate to only 0. l - 0.2 regal. These figures correspond to a resolving

power of about 10 -8 and an accuracy of about 10 -7.

The classical method for the determination of the absolute value of g

is the measurement of the period of a pendulum swinging in a high vacuum

to reduce air resistance. The typical pendulum is about 0. Z5 meter in

length, with a complete swing, back and forth, occurring about once each

second. The absolute determination of the acceleration requires a very

accurate knowledge of the effective length of the pendulum, which changes

with temperature, and the effects of air resistance, pivot friction, magnetic

forces, and pendulum support flexure. To determine the period with the

necessary refinement requires accurate timing of a great number of swings.

A_n error in the period of 0.5 /4-sec leads to an error in g of 0. 1 mgal.

A determination normally requires some six hours of swinging if the total

counted number of swings is timed to 0.01 sec. Necessary accessories are

a vacuum chamber (on earth), an optical-electric system for counting the

swings, an accurate timepiece, and an interferometer for measuring the

flexure of the pendulum support.

The possibility of swinging a small bob hung from the LEM at the end

of an invar wire filament, say, 4 meters long, nevertheless is an attrac-

tive one, as the device is so simple and a hard vacuum already exists on

the moon. Friction arising from the flexure of the filament and the LEM

frame would probably be negligibly small for small amplitudes of swing,

and the relatively long period of such a pendulum in the low lunar gravity

field (about I0 sec) might simplify the task of counting the swings. If the

effective length of such a pendulum were known to 4 microns (that is,

1:106), the error in the derived value of g would be 0. 16 mgal; if the

error in length were 0.4 mm, the error g would be 16 regal. Invar

has a coefficient of relative expansion ranging from 0.7 x 10 -6 down to

negative values; let us take 0.4 x 10 -6 as a typical value. The tempera-
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ture of the wire could therefore be in error by quite a large amount and

still not vitiate the result completely. For example, if the temperature

were in error by 100°C, the length of the wire would be in error by

0.4 x 10 -6 x 400 cm x 100, or 0. 16 ram, and the measured gravity would

be in error by 6 regals. Even if the temperature of the filament were not

measured, the temperature of a similar wire immersed in the same bath

of ambient radiation could be measured with a simple thermocouple weighing

at most a few grams. If sufficient pains are taken to expose the two wires

to the same amount of sky, i.e., arrange them so the LEM body blanks out

the same solid angle of sky and terrain, the temperature match could be

made quite close; but we have seen that extreme pains are unnecessary. It

should even be possible to calculate the wire temperature closely enough

from the approximately known radiation field to which it is exposed. The

length of the wire as a function of the tension exerted by the bob could be

calibrated in a terrestrial laboratory before and after the mission. If

the bob were allowed to swing for 10,000 sec (about 3 hrs. ), i. e. , com-

plete 1000 swings, and the total time were measured with an accuracy of

0.01 sec, the resulting error in measured g from this cause would be

0.3 regal. The method looks entirely feasible if a simple device can be

constructed to count the number of swings automatically, and to record

the times of the first and last swings with reference to the time signal

available in the LEM. Possibly the shadow of the bob could be caused

to fall on a photocell (twice per oscillation) and the pulses resulting from

the interruption in the photon current used to operate a counting circuit,

the whole thing miniaturized to weigh a few ounces.

An alternative terrestrial system is based on the timing of a body in

free fall. The measurements of time and fall distance, however, must be

exquisitely fine, which confines this method for the foreseeable future to

the laboratory. Even there, it is surrounded by great difficulties and has

not been found very satisfactory.

There are several possible systems for the measurement of differences

in g between a reference point and a new point in the field. Exotic appli-

cations of accelerometers have been considered but no satisfactory method

has been derived. Somewhat more success has been achieved with the
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measurement of the frequency of vibration of a filament supporting a

known mass. The results have been inferior, however, and the complexity

of the attendant apparatus makes this method impracticable for field use.

Static methods, wherein the elongation of a fiber under the load of a small

mass, or the flexure of an elastic support, are found to be most convenient

and useful, and most portable gravity meters are based on this principle.

They are extremely sensitive to small differences in g between one place

and another, even as small as 0.01 mgal. No such instruments have

operating ranges admitting of absolute measures, nor of relative measures

between places having wide differences of g. They must be adjusted,

therefore, rather closely to the expected g value, and calibrated at a

place of known g before moving to a new point.

Most gravity meters are extremely sensitive to ambient temperature

and are either provided with means for temperature control, thereby re-

quiring accessory heating equipment and power supply, or are tempera-

ture compensated. The Lacoste-Komberg gravity meter, one of the two

meters best known in America has a temperature-controlled housing which

weighs about 15 pounds and probably cannot readily be miniaturized much

below that figure. The other widely known meter, the Worden gravity

meter, is temperature-compensated, requiring no external power source.

It is lighter than the Lacoste-Romberg meter, and the weight can probably

be further reduced to the order of a pound or so. The Worden meter is

characterized by a considerably higher drift rate than the temperature-

controlled Lacoste-Romberg; however with careful use it is capable of

equalling its performance. Apart from the wire-bob pendulum discussed

above, the Worden meter is apparently the only gravity instrument suit-

able for lunar use. The problem of miniaturizing should be minor. Since

the meter must be calibrated at a point of known g not greatly different

from that of the place of intended use (for the moon this is about 160 gals)

special means to calibrate it must be developed. No gravity field of that

magnitude can be simulated on earth that lasts long enough or that is

accurate enough to permit a normal calibration process. Substitute

methods might, however, be devised, e.g. by inclining the instrument, or

by interchanging masses of correct weights.
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A development to solve the problems of miniaturization and calibration

could be initiated; sooner or later it will certainly be useful for survey

missions, if not used on the first missions. The makers of the Worden

gravity meter have indicated that the cost would probably be in the range

$I00,000 to $200,000, depending upon the accuracy desired. They have

emphasized the difficulty of calibration and have expressed doubt that a

Worden type meter could be calibrated with existing methods more closely

than 5 milligals or so. Therefore an accuracy of I0 milligals may be pre-

sumed to be within reach.
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SEC TION VIII

USE OF HORIZONTAL AND VERTICAL CONTROL

POINTS ON THE LUNAR SURFACE, AND
PROCEDURES FOR OBTAINING THEM

A. INTRODUCTION

Although extensive surveys cannot be carried out on the lunar surface

during the early Apollo missions, it should be possible to establish a limited

number of local horizontal and vertical control points (surface features or

artificial targets) in vicinity of the landing sites. However, since the astro-

nauts will not travel more than 1,000 ft. from the LEM, the size of the

survey area will be restricted to a short range of visibility. Assuming the

landing site will be in a relatively fiat area, the maximum distance to the

visible horizon will only be _ 2.5 km when the astronaut is standing on the

lunar surface, or _: 5 km if he is able to observe the landscape from the top

of LEM. The allowable survey region defined by the local horizon would thus

be confined to an area of =:_ 20-80 sq. km. At some of the proposed Apollo

landing areas, surface features as far away as 20-30 km may be visible from

the landing site; however, it is doubtful that these features could be adequately

positioned with surveying equipment that can be carried in the LEM.

B. VALUE OF LOCAL HORIZONTAL AND VERTICAL CONTROL

Considering that surveys will be restricted to a small area around each

landing site, their value will be discussed as related to two functions for

which a network of local horizontal and vertical control points might be

useful:

l, To provide mapping control for use in reduction and orientation

of orbital photographs to a coordinate system oriented to the

axis of the moon.

To aid in obtaining the precise location of geological features

or geophysical apparatus which may be used during the lunar

landings.
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I. Mapping Control Points.

It is planned that mapping photography with a ground resolution of 8

meters will be obtained from Lunar Orbiters at 50 km heights above the

moon's surface using a 3-inch focal length camera with _ 45 ° field of view

(area coverage of_36 km Z on the lunar surface). L-8_ The photography

will have 55% forward overlap to provide stereo coverage along the orbital

path and sufficient sidelap from successive orbital tracks to provide con-

tinuous coverage over areas approximately Z00 x Z00 kin.

This photography will probably be reduced by conventional photogram-

metric methods relying on analytical triangulation for adjustment of large

blocks of photographs. For reduction purposes the reference points in the

existing AMS or ACIC lunar control networks, or the known positions of the

exposure stations (as determined from DSIF tracking), will be used for

c ontr oi.

In adjustment of block triangulation (which in the Orbiter case may

include 10 or more photographic strips and -_ i00 frames), control data

could be weighted according to their estimated or known accuracies.

Assuming that orbital mapping photography is of good metric quality, result-

ing positional accuracies of lunar features obtained from phototriangulation

would depend mainly on the amount of control available, its distribution

within the photographed area, and the errors of the control itself. (See

Appendix A for error analysis of orbital photography. )

In view of the capabilities of photogrammetric aerotriangulation [9, 103

and results of the analysis made in Appendix A, orbital photography should

be capable of providing positions of well-defined features on the lunar surface

to an accuracy of i00-250 meters within a self-consistent coordinate system

defined by either the orbital tracking data or reference points of the AMS

(or ACIC) control networks. A positioning capability of this order of accuracy

seems adequate for initial lunar operations and can be obtained without the

need of control points established directly on the lunar surface.
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It should be kept in mind, however, that to a very large extent measure-

ments that can be attempted during the early Apollo landings, especially the

first one, are to be considered experimental in nature, and to be the basis for

deriving improved techniques, methods and equipments to be used on future

missions. As the astonaut's mobility around a landing site and his range are

increased, with the ultimate possibility of widely varying travel over the

surface of the moon and the connecting together of landing areas, the value of

establishing and extending on the surface horizontal and vertical control

networks correspondingly increases. It is therefore considered important

to devise a workable surface system of obtaining horizontal and vertical

control, even though on the first mission the area covered will be small and

its selenodetic value per se perhaps marginal.

It should also be pointed out that in the event lunar orbital photography is

not successful, or that the LEM lands in an area not covered by the photog-

raphy, and that SXT observations are not provided for or are unsuccessful,

the value of the local horizontal and vertical control coupled with astronomic

observations which will also be undertaken, becomes greater. In addition,

the further utility of these observations should be considered in the light of

the benefits outlined below:

i. It would be desirable to have positions of lunar features referenced

in a coordinate system oriented to the axis of the moon rather than

in a barycentric coordinate system (based on orbital tracking

data) or one defined by earth-based photography {AMS or ACIC

system), making it necessary to adjust the map coordinate

reference to a lunar astronomic reference system. This could

be accomplished by establishing a number of well-distributed

reference control points (with astronomic orientation) on the

lunar surface. A single position as obtained from an isolated

landing, however, would not be sufficient. At least three widely

separated control points in the mapped region would be needed,

which could be obtained only during the series of Apollo landings.
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ii. If a number of well-defined horizontal and vertical control points

are available in the vicinity of the Apollo landing sites and identi-

fiable in orbital photography, it may be possible to use these

reference points, after a number of lunar landings have been made,

to reduce orbital photographs independently of the existing control

points in the AMS or ACIC control networks. For example,

suppose that a local network of well-distributed, horizontal and

vertical control points (say 4-6} are established at each landing

site and that orbital mapping photographs cover the area between

Z or more landing sites. Under such conditions it may be possible to

utilize each local horizontal and vertical control network as

photogrammetric control for aerotriangulation operations. For

this purpose, the lunar ground points could serve as independent

selenodetic control to obtain scale and orientation of perhaps one

or two photographic strips which, in turn, could be used to adjust

a block of photo strips covering a large area of the moon's surface.

The accuracy of the aerotriangulation would depend on the

distribution and number of available local control networks. Since

the latter would be limited by the number of actual lunar landings,

careful planning and design of the aerotriangulation operations

would be necessary to obtain accurate mapping results independent

of the existing AMS or ACIC lunar control networks.

Although the surface control points from one landing site to the next will

not be selenodetically tied together, this should not prevent aerotriangulation

or bridging operations, as each local control network could be treated as

independent control to provide scale and orientation for a number of widely

separated photo exposures. Procedures for using independent control for

aerotriangulation have been investigated extensively in recent years. One

procedure, known as the Cross-Bases Method, has been found to be ideally

suited for geodetically unexplored regions (such as the moon), as it is

independent of deflections of the vertical. [I i] In this method, the bridg-

ing of a photographic strip is accomplished using local base lengths, azimuths

and vertical heights at the ends of a photo strip, without relying on geodet-

ically connected control points over the length of the strip. The method
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requires only a minimum of control; e. g., a baseline (normal to the photo-

graphic flight strip) at each end of a strip, the astronomic azimuths of these

baselines, and three well-distributed vertical reference points at each end

of the photo strip.

It appears that photogrammetric control of the type needed for the Cross-

Bases Method could be obtained at each landing site if local surveys of the type

outlined in Section D below are accomplished. These ground control

requirements should not be difficult to meet; for example, a local horizontal

and vertical control network accurate to 1:2500 and about 30 arc-seconds

should be adequate.

On the basis of the above considerations, it appears that it would be

advantageous to survey mapping control directly on the lunar surface for

selenodetic operations, particularly if it is desirable to have features

referenced in a coordinate system oriented to the mean axis of rotation of

the moon. It is possible also that these control points could, after a number

of lunar landings, provide an independent check on existing maps referenced

to the AMS or ACIC control networks.

Z. Positioning of Geophysical Equipment.

Local surveys of low-order accuracy will be needed in the vicinity of the

Apollo landing sites to support geophysical observations that will be under-

taken. One of the main purposes of these surveys would be to determine

relative positions of geophysical devices that may be placed around the landing

site, as well as significant geological features, and to determine their

positional relationships to nearby lunar features. The needs of the geologist

and geophysicist can best be met by a large-scale topographic map of the

area, which could be obtained by surface photography if it is not obtainable

from high-resolution orbital photographs prior to the landing. Control

requirements for geophysical mapping, however, are not at all stringent,

since directions (bearings)to features need to be accurate only to about i/Z °,

relative horizontal distances between features to within about 1:500, and
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vertical angles to within l°-Z ° /lZ_7. Survey procedures outlined in

paragraph D below would easily satisfy these needs.

C. REVIEW OF PROCEDURES AND EQUIPMENT FOR ESTABLISHING

CONTROL POINTS

Applications of a wide variety of surveying methods and devices for

establishing control points on the lunar surface for the above purposes were

considered, taking into account operational constraints of the Apollo mission

and the lunar environment. Brief comments regarding the major categories

are presented in the following paragraphs.

I. Distance Measuring Devices.

(a) Taping. The simple procedure of taping a thousand feet on one, two,

or three sides of the LEM to establish short baselines for use in positioning

distant survey targets would be attractive, if it were not wholly impracticable.

If the effort were possible in the time allowed, results obtainable would be of

low accuracy and, since unverifiable, of even lower reliability.

Accuracy of a taped line is most affected by blunders, which would be

unusually hard to avoid in the strange and difficult environment. Other

sources of taped error are variations in temperature, tension, sag, level,

alignment, and in the precise definition of the measuring end points. Each

of these contributes to degradation of results.

(b) Electronic distance measuring equipment. Conventional instruments

of the Geodimeter and Tellurometer types require a placed and directed

reflector or transponder, which excludes them for measurements beyond the

walking range of the astronaut. In addition, current models are too heavy

and bulky and require more power than can be expected for this operation.

Without further elaboration it is believed that other and better techniques

will be available.
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Radar and laser devices capable of ranging to passive targets at a five

kilometer range or more are encouraging for lunar operations and, therefore,

detailed consideration was given to their application. A comparison of radar

and laser ranging techniques was made and results indicated that laser

ranging would be more promising for survey operations (see Appendix G ).

{c) Indirect distance measurin G devices. These include subtense and

stadia instruments, range finders, and mounted stereoscopic cameras.

Insofar as they require short portable precise fixed bases they are not

accurate for the longer ranges desired; and the instruments are generally

heavy, bulky, inconvenient and time-consuming to operate especially for a

single operator. The short-base procedure described in Paragraph DZ

below is a development of stadia methods which, as modified, is considered

a more practicable technique for the mission.

Z. Angle Measuring Equipment.

(a) Theodolites. It is not likely that a precise theodolite, the basic tool

of geodetic engineers, would be practicable for the initial missions. The

time and effort required for accurate direction measurement are far out of

proportion to results that may be expected from a short mission at a single

location. It would be necessary to adapt the fine pointing and adjusting

screws to the pressure-gloves the operator must wear. Precise sighting

through the helmet faceplate would be difficult and making the readings

would not be much easier. Descriptions of terrain targets would be ambigu-

ous, and each pointing is an independent operation, which would severely

limit the information than can be obtained in a short time.

Use of a conventional photo-theodolite would have most of the drawbacks

mentioned for any theodolite. Its need, for example, for precise pointing

and angle reading is a serious disadvantage. The concept of making angle

measurements photographically, however, is well established, and implemen-

tation of this approach is described below.
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(b) Photography. This is the most logical approach for obtaining

angular relationships of lunar surface features or survey targets. A large

number of positions of prominent features can be had from photographic

intersections with a minimum of field operations; time here saved is a huge

asset. The absence of any lunar atmosphere and, therefore, of any vertical

refractions, insures that vertical angles taken from the terrestrial photo-

graphs are true; this means that reliable relative elevations are available on

intersected terrain features. (Vertical angles taken in the earth's atmosphere

are subject to considerable errors due to uncertain vertical refraction. )

The normal recording of angle readings would be highly objectionable

under conditions where there is but one astronaut surveyor on the lunar

surface; terrestrial photography obviates this angle recording and provides a

permanent and true record of field data.

D. SELECTED SURVEY PROCEDURES

From the above considerations it appears that the most promising

surveying techniques would involve either photogrammetric procedures

coupled with an electronic ranging device, or exclusively photogrammetric

methods. In the former method, distance measurements could be made by

laser ranging to remote passive targets, and angular data to these targets

could be obtained photogrammetrically; all measurements being obtained

from a single station which, ideally, would be the top of LEM. For the

latter method, a short baseline could be obtained photogrammetrically using

the dimensions of the LEM and combined with horizon photographs taken

from nearby stations to intersect distant targets. For further discussions,

these methods will be designated as the "range and angle method" and the

"short base method. "

Possible application of these surveying techniques for determining a

local network of control points in the vicinity of the Apollo landing areas is

outlined in the following paragraphs, and a detailed program for use of each

method in conjunction with selenodetic measurements is presented in Section IX.

In outlining these methods, it is assumed that the camera equipment
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(panoramic and precision frame cameras) recommended in Appendix E and

survey targets (reflectorized balloons) proposed in Appendix F will be utilized.

I. Range and Angle Method.

In this method which would provide a local control net only, it is pro-

posed that an observation station on top of the LEM be used to obtain range

and angle measurements, as this location would provide the maximum range

of visibility to the local horizon. Range measurements would be obtained

using a laser ranger and directions {both horizontal and vertical angles)

would be obtained photographically using the panoramic camera recommended

in Appendix

Since survey targets must be detectable in orbital photographs as well

as being visible from the LEM, it is proposed that 10-foot diameter reflector-

ized mylar balloons be used. (See Appendix F for details. } These balloons

would provide specular reflections of the sunlight and be detectable as point

sources in both the orbital and surface photographs. They would also serve

as passive reflectors for the laser ranger.

In establishing a local control network, the survey targets should be

placed as far away from the LEM as the range of visibility will allow and be

evenly distributed around the LEM; thus, a means of ejecting the targets

{balloons} to their desired location is required. For this purpose, it is

proposed that a small launcher utilizing compressed gas cartridges {or pos-

sibly other means} be used to eject the balloon targets. The balloons could

be packaged in a small container weighing less than one pound and would be

self-inflating after ejection. Launching of the balloons to distances of -_ 5 km

by a small self-contained ejection system seems feasible in the low gravity

field of the moon.

In applying the range and angle method, balloon targets (4-6) would be

launched in cardinal directions to distances of _ 5 km. Panoramic photo-

graphs of the horizon are then taken from a leveled support on the top of the

LEM. These pictures will include the balloon targets, the landscape from
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about seventy meters from the LEM to the horizon, and a belt of stars above

the horizon. The camera position is also used by the laser ranger to obtain

distances to each remote balloon target and, if possible, to a number of

prominent terrain features. Each range reading is referenced to the others

for identification purposes by rough azimuth readings using a simple pelorus

or horizontal circle attached to the laser or instrument support. Readings of

laser distances and azimuths could be made orally and recorded directly on

the astronaut's voice tape.

Characteristics for the laser ranging device are discussed in Appendix

G , together with some of the design problems that should be considered.

Ideally, the laser should be capable of ranging to distances up to 20-25 km

with an accuracy of at least 1:2500 for distances up to 5 km and about 1:5000

for maximum distances. It should not weigh over 10-15 pounds including its

power source.

In operation the laser would be attached to a support on top of the LEM

and sighted on a selected target by using simple sights or, if necessary, a

specially designed telescope. Range measurements could be read visually

from a digital display and recorded orally by the astronaut on the voice tape.

Detailed characteristics of the panoramic camera are presented in

Appendix E which considers camera specifications for the various selenodetic

experiments. As proposed, the panoramic camera would have a potential

metric accuracy of 10 arc-seconds. It would provide 350 ° (or possibly 360 ° )

coverage of the horizon, having a 30 ° field of view in the vertical direction to

provide Z5 ° coverage of the star field above the horizon and 5° coverage

below to contain the terrain. The camera employs a horizontal fixed objec-

tive lens of _ i00 mm focal length with a folded mirror system which rotates

about the vertical axis to provide an optical scan of the horizon. (See diagram

in Appendix E. ) The optical system uses a cylindrical focal plane which pro-

vides azimuthal angles directly and vertical angles as a function of the camera

focal length. The camera uses 70 mm roll film, and provides an image format

of 60 mm x _ 610 ram.
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In use, the camera would be mounted on a support platform on top of

the LEM and would be approximately leveled by the astronaut. Precision

level vials would be provided internally and recorded on each photographic

exposure, thereby eliminating the need to have the camera precisely leveled

to the local vertical at the time of exposure.

Figure VIII-1 indicates the positioning error that can be expected for

given accuracies in range and angle measurements. Since directions to

distant targets can be precisely determined from photography, position

accuracy depends primarily on the precision of range measurements. Con-

sidering that it would be desirable to position survey targets within an

accuracy of 2-3 meters over distances of N5 km, a ranging capability of

1:2500 would be satisfactory. For distance beyond the 5 km range (for pos-

sible positioning of well-defined lunar features which may project above the

local horizon) a ranging accuracy of 1:5000 would be desirable.

2. Short Base Method.

In this method, which could provide local control of lower accuracy

than 1 above, but would permit mapping of terrain features, the positions

of the proposed survey target balloons would be established solely by photo-

graphic procedures, using one of the survey schemes shown in Figure VLII-2.

A short baseline is established indirectly between the LEM and station A by

photogrammetric resection using the known dimensions of the LEM (or special

targets placed thereon). For this purpose, 4 to 6well-defined target points

with known relative spatial orientation must be placed on the LEM, and these

must be identifiable in photographs obtained at station A. The known relations

of the target points would be utilized in post analysis for the space resection

of the camera position at station A to obtain the distance between the LEM

and the camera station. This baseline would then be combined with panor-

amic horizon photographs obtained from station A and one or two nearby

stations (either Schemes 1 or 2) to obtain directions for the intersection of

distance targets (either artificial balloon or well-defined surface features).

The use of a precision frame camera is recommended for the photo-
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grammetric determination of the distance between the LEM and Station A.

Characteristics of this camera are detailed in AlSpendix E, which also dis-

cusses its other applications for selenodetic experiments. As proposed,

the preceision frame camera has a potential metric accuracy of 5 arc-seconds.

It would have an f/3 lens with a focal length of 150 mm, a field of view of

40 ° , and an image format of all0 mm square. Since roll film is to be used,

a focal plane reseau is proposed for the camera to control the effects of

film shrinkage and possible distortions that occur when film is not held

correctly in the focal plane.

The accuracy in determining the distance between the LEM and

station A will depend primarily on the geometric distributions of the target

points on the LEM and the accuracy with which they can be positioned

relative to each other. They should be spaced as far apart as possible so

that the distance to station A can be as long as possible while maintaining

reasonable geometry of the reference points in the photographs. As a

minimum requirement, the targets should have a relative positional

accuracy commensurate with the measuring accuracy of the photographs.

Assuming that the latter is 5-10_ and that the precision frame camera

(f=150 am) is used at station A at a distance of =30 meters from the LEM,

the targets would need to have a relative positional accuracy of 1-2 mm.

This amounts to an accuracy of about 1:5000 over a distance of 18 meters

which is about the maximum separation that the targets would have if attached

directly to the LEM. It is reasonable to assume that preselected points or

special fiducial marks on the LEM will be known within this requirement.

In addition to target markings placed directly on the LEM surface, it

would be desirable to utilize specially calibrated stadia targets which could

be extended from the top of LEM as indicated in Figure VIII-3. These

targets would provide photogrammetric control in case there is deformation

of the LEM skin or if the other target points are not identifiable in the photo-

graphs. The suggested stadia targets consist of 2 four-meter long invar

wires suspended from short supports attached at the top of the LEM. Two

spherical targets of about 50 mm diameter are attached to the ends of each

I00

I
I

I
I

I
I
I
I

!
I

I
I

I
I
I

I
I

I

I



I

I

I

I

I

I

I

I

I

I

i

I

I

I

I

I

I

I

I

0
1
i.I./

0::

ILl _r,
I.-- c::

,_ o
ry-.J

m_-_
-..I--

I

I.,t.I

m
...1 _

(..)_

1

I01

er)

!

H

_>



wire. The bottom target could be partially filled with liquid to dampen its

oscillation or, if necessary, a liquid filled plumb bob could be used.

Alternate positions for attachment of the wire support to the LEM could be

provided so that the targets could be visible from any selected location for

station A. The positional relationship of both stadia targets for each location

of their support brackets could be precisely determined under laboratory

conditions.

The accuracy of the short base method depends mainly on the number

of camera stations used, the geometry of the triangulation, the accuracy of

the measured base and the accuracy of angular observations from the camera

stations. The graphs in Figure VIII-4 illustrate the effects of these parameters

in positioning distant targets for the minimum survey conditions (Scheme 1

in Figure VIII-2) when targets are normal to the base. As shown in Figure

VllI-4a, a target position on the visible horizon at a distance of _: Z. 5 km

can be positioned within Z-3 meters when a baseline length of 200-300 meters

with an accuracy of _1:3000 is used (with angle observations from the

camera stations within i0 arc-seconds). Increasing the accuracy of the

base beyond 1:3000 would offer no significant improvement in positional

accuracy. Figures VIII-4b through 4d show that position errors vary

nearly as the square of the target distance and almost directly as the error

in angle measurements.

Through experimenting with various combinations of measurements

using the graphs presented in Figure VIII-4, it becomes apparent that the

most efficient way of arriving photogrammetrically at an accuracy of 3 meters

at Z. 5 kilometers for the minimum survey conditions, is by the configuration

shown in Figure VIII-5. There is, however, considerable leeway in this

configuration, enabling the astronaut to select the location of the two camera

stations with a crude stadia device, if necessary, without substantially

affecting the result. Although the geometric conditions for photogrammetric

determination of the distance between the LEM and station A have been

relaxed in the configuration in Figure VIII-5 (i. e., the vertex angle at the

camera station as defined by the spread of the target points on the LEM is

only _ 10°), the accuracy of determination of the base distance using the

I02

I

I
I
I

I
I
I

I

I
I
I

I

I
I
I
I

I

I

I



I

I
o b

I o o J _/
9 Torget Distonce ,_ 2.5 km i ___ 300m emil "7 _/ -" /

. --:=::: --=o.o,. o/ v _/

I _ ' I__ Angul@r Error. t01 = I0" Ind ,0" _._ I An,ullr Error. _1 = IO"ond '0" / / i_*// / /

.... ////
I ZJ.-"
I o o AZj/

o I I I I ''--_ _ _ ' ;
_ 3-665- % o-65" -_o-oo

I ACCURACY OF BASE ( Proportional Ports) DISTANCE OF TARGET (Kilometers)

I

I C. d.

I01 IOI /
I 9 Bose Accuracy- I: 3000 9 1 Bose Accuracy - J 3000

8i :rge t 3Dlo_(1:©_ o'_:" 5 k m / . _ Target I)istonce _ 2.5 km_,oo.,.. _ "p\ y"°''°''"°',°''°'°''°

W _ __1 _ 4 Eo_ ./ _11- zo_3

I F- z /_I f

o , _.-_1 _-,

I I I I 1 I I o I I I 1 I
o 5 Jo _5 zo z_ 30 ioo zoo 300 4oo 5oo

I
I

i

I

ANGULAR ERROR (Seconds) LENGTH OF BASE (Meters)

EFFECTS OF BASE AND ANGULAR ERRORS

ON POSITIONING ACCURACY

WITH SHORT BASE METHOD

FIGURE VIII - 4

103



104

CAMERA STATION A

I.Photographs of LEM
for base measurements

2.Panoramic photographs
of landscape

I
/
/
/
/
/
/
I
I
I

TARGET

z

I \
\
\

\
\
\
\
\

LEM

CAMERA STATION B

I.Ponoramic photograph
of landscape

SURVEY CONFIGURATION FOR
PHOTOGRAMMETRIC EXPANSION OF SHORT BASE

TO POSITION DISTANT TARGETS

FIGURE VIII - 5

I

I

I

I

I

I

I

I

i

I

I

I

!

I

I

I

I

I

I



I
I

I
I

I
I

I
I
I

I

I
I

I
I

I
I
I

I

I

precision frame camera should be on the order of 1:4000-5000, if sufficient

target points (5-6) are available in photographs from station A. This base

could be expanded to station B within the desired requirement of 1:3000 by

utilizing panoramic photographs from stations A and B.

Figure VIII-6 shows the expected capabilities of the short base method

for positioning distant targets around the horizon when the expanded base

distance (stations A-B) is established with an accuracy of 1:3000, and the angle

observations at the ends of the base are within 10 arc-seconds. As indicated,

only those targets on the horizon which are located within 45 ° of the normal

to the baseline can be positioned within an accuracy of 3 meters. Therefore,

it would be desirable to include an additional camera station for phototriangu-

lation (Scheme Z of Figure VIII-Z) to fix all positions around the horizon.

3. Comparison of Survey Methods

Although the range and angle method seems to be the most promising

surveying technique at present for establishing local control points, the short

base method was included because the final choice will depend a great deal upon

further knowledge of lunar surface conditions, the final configuration of the LEM,

and the mobility of the astronauts. Also, each method has inherent advantages

over the other which must be considered before final selection of the technique

to be used.

The range and angle method can be conducted entirely, and preferably,

from the top of the LEM. This has the distinct advantages of eliminating the

transporting of equipment on the lunar surface, and of being able to see targets

of twice the distance away compared with operations from the lunar surface only.

The latter capability is particularly desirable for establishment of photogram-

metric control for orbital photography. However, some difficulty may be

encountered in the use of ejected balloon targets for ranging operations or in

provisions of working room on the top of the LEM. With regard to the latter,

the top of the LEM must be reasonably stable and free from vibration, and

must also provide room and safety for the operations required; it is probable,

however, that the observer may stand in the man-hole at the top of the LEM,
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the upper half of his body protruding above the aperture.

Although the short base system would require more time and effort

and would be limited to an area of half the radius of that visible from the top

of the LEM, it provides some advantages over the range and angle system.

The basic advantage is that it provides complete, practically foolproof cover-

age of the area (i. e. , once the base has been established and panoramic photo-

graphs taken from both ends (preferably from the three apexes of a triangle

as in Scheme Z of Figure VIII-2, all discrete points within the photographed

area can be located), so that a detailed map of the lunar surface on a local

scale can be made, restricted only by the character of the lunar relief.

Should the Surveyor and Orbiter series indicate that the landing site would be

in an area of considerable relief, the short base method might prove more

useful. This method would also provide a means to reference points in any

geophysical or geological traverses being carried out.

E. ACCESSORY SURVEY EQUIPMENT

In addition to the surveying instruments discussed above, some

accessory components will be required including camera supports, special

survey targets, initial leveling devices for cameras, and, possibly, a few other

minor items. The most important accessories are discussed in the following

Minor items might include binoculars, 30-meter steel pocket tape and ther-

mometers.

I. Leveling Device

One problem in instrumentation that will be encountered and must be

solved is that of leveling the panoramic camera. Various sophisticated systems

have been considered in this connection: gravity-operated automatic leveling

devices with gimballed camera support, electronically operated automatic

leveling devices, gyroscopic devices, etc. The simplest and most feasible

at this time, however, seems to be an adaptation of the conventional spirit

bubbles used in surveying instruments. It is proposed that, as indicated in

2 below on camera supports, a course level vial or vials be contained in the
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support, so that the camera when placed on the support will be leveled

theoretically within the range of two orthogonally placed precise level vials

inside the camera body. Since these precise levels will be photographed

during each exposure, thus providing a permanent record of the level reference

and enabling subsequent opposing pairs of photographs to be reduced to the true

horizon, no further leveling should be required. However, provision must be
made for the astronaut to be able to monitor these internal vials and to adjust

the level if necessary; the sensitivity and delicacy of level vials in general

indicates the possibility that, because of the rather harsh conditions of the

journey to the lunar surface, there is likelihood that the adjustment of these

vials will be disrupted to such an extent that when the support is leveled the
bubble of one or both of the internal vials will be off the scale, thus neces-

sitating further adjustment of the camera level.

At this point, it would be well to point out some of the limitations of

the spirit level. It is an extremely delicate and highly sensitive tool. The

bubble is affected by differential heating from external light, so that it must

be protected both from radiant heat and from light. A bubble of the sensitivity

required in this camera would be termed a "slov_' bubble in a conventional

surveying instrument, and should be even slower on the lunar surface with its

lesser gravitational force. Therefore, considerable care will have to be
exercised in allowing enough time for the bubble to settle down for each

photograph. Nevertheless, at this time, considering weight limitations, the
level vial seems to be the most practical way to provide a gravity based

reference for the panoramic camera.

Z. Camera Supports

Suitable supports will be required to use the camera systems recom-

mended for the selenodetic operations. If the top of the LEM is used as a

camera station, a simple support plate, similar to a conventional tribrach

should provide a satisfactory platform. A camera station on the lunar surface

will require a mount which may be similar to the conventional tripod, provided

it can be supported in a stable condition on the surface.
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Supports for the cameras used on the lunar surface should be designed

with the following considerations in mind:

I. Stability. Any motion of the camera during an exposure will

degrade the precision of the measurements; the rotation of

lens of the panoramic camera will require special stability

of the support. The low gravity of the moon will increase

sensitivity to torques, and jarring disturbances.

Portability. Two or three camera supports will be required.

They must be designed for the minimum length and bulk

which can be extended to the necessary height and stability

without undue effort by the user.

o Convenience. The operations which must be performed

include: setting up the support; making it steady; attaching

the camera; leveling, pointing and operating the camera;

removing the camera; removing the film. For these to be

done quickly and easily, the camera height should be

limited to about five feet.

With present knowledge of ground conditions, a support resembling

the conventional transit tripod may prove most adaptable. Folding or sliding

extension legs, perhaps of aluminum tubing, would be required to meet bulk

and length limitations.

Design of the supports, of the feet in particular, will be easier fol-

lowing the observations made by the unmanned Surveyor missions. The

roughness of the terrain, the texture, rigidity and strength of the surface, the

presence of loose particles and their size and depth, may be better known

before Apollo.

A hard smooth surface may justify the use of mechanical or chemical

binders at or around the feet to insure stability. A vesicular formation may

make pointed feet stable; perhaps a flange, or an angle by which the feet may
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be hammered into the surface will help. Use of a chemical binder to stabilize

a soft surface may also be considered. Another possibility is the use of

light-weight plastic bags to be filled on the spot with compacted indigenous

surface material. One sack under each tripod leg should furnish much

greater density and stability in otherwise loose material.

Two additional factors that must be considered in the design of the

camera supports are interchangeability and visibility. Since two cameras

are to occupy the same station successively, a leveling head to which each

camera can be attached without loss of spatial orientation should be part of

the support. This head including a centering rod could also serve as the

target at the camera station. A suggested head is the Kern type with center-

ing rod. EI3J On this rod is a circular level by which the head can quickly be

leveled within two minutes of arc. The centering rod can be marked to define

the point in space occupied by the camera. In addition the rod will provide a

coarse vertical reference for photography on which it appears.

3. Stadimeter

The short base method will require the astronaut to position his

camera some 35 meters from the LEM and again about Z00 meters from both

this camera station and the LEM. W-hile accuracy in these distances is not

critical, it may be difficult even to approximate distances under the unusual

conditions expected; thus, some device to aid in estimating these distances

within about 10% would be desirable.

If the chosen positions are visible from inside the LEM it would be

possible for the inside man to intercept the height of the roving man with a

simple stadia viewer. If, however, the astronaut cannot be directed to the

proper location from inside the LEM, he may have predetermined markings on

his glove, or other suitable item, such that when the arm is fully extended

and the markings are held vertical they will intercept the known height of the

LEM at the desired distances.
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SECTION IX

SUGGESTED SYSTEMS AND PROGRAMS FOR CONDUCTING

SELENODETIC OPERATIONS ON THE LUNAR SURFACE

A. INTRODUCTION

It would be unrealistic to propose any one system for selenodetic opera-

tions, because of the still limited knowledge of the moon, as well as the

many mission constraints; so several systems have been outlined. As lunar

knowledge increases (through Ranger, Orbiter, and Surveyor programs) one

system or a combination of systems will become apparent as the optimum

method. The choice will be affected by whether or not the top of the LEM

can be used as an observation station, mobility of the astronaut on the lunar

surface, character and degree of relief of the lunar surface, and time avail-

able for survey. The following pages describe two possible systems, in-

cluding procedures devised, instrumentation required, and expected results.

B. SYSTEM I UTILIZING CAMERAS AND LASER RANGER

This system (Figure IX-1) will provide astronomic position of the LEM,

its selenocentric position with respect to the CSM, and selenodetic positions

of selected targets visible from the top of the LEM (about 5 kin). Selenodetic

positions will be determined by range and angle measurements from the top

of the LEM. Astronomic and selenocentric positions will be determined

from either the top of the LEM, or a position on the lunar surface close to

the LEM.

The astronauts will begin their selenodetic mission by projecting, to a

distance of about 5 krn, four reflectorized balloons to serve as mapping

control targets or points for orbital photography. The four balloons will

be fired at 90 ° angles, except that no balloon will be fired directly toward

the sun, as this would probably render it unphotographable. A fifth balloon

will be projected to a distance of about 2.5 kin, to serve as a reference

point for lunar pole photography. The fifth balloon will be fired to the north

(or south in the southern hemisphere), so that it will be visible in photography
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of the lunar celestial pole. If it appears that topographic relief will pro-

vide sufficient orientation to permit matching of photographs, the fifth

balloon could be utilized at the longer distance or eliminated from the

mission altog ether.

A camera support is erected on the lunar surface close to the LEM, in

a position from which the lunar celestial pole is visible. (See Figure IX-1. )

The precision frame camera is secured to this support and pointed to the

pole. The pointing must insure that the lunar horizon and the fifth balloon

are visible in the lower part of the picture, which will have a filter screen.

After the screen has been put inplace, sets of photographs (3-4) of the polar

region are taken. During the course of the mission itwouldbe necessary

to take at least two sets of celestial pole photographs separated in time as

far as possible.

The precision camera will also be used for photographing the CSM

against a star background, so can remain on the support throughout the

mission, requiring only swinging and pointing of the camera to either the

CSM or the polar region. The photograph of the CSM will be taken with

the landscape screen removed, and must be related accurately to absolute

time (within 1/100th second). At least three photographs should be taken

during an orbital pass, preferably in widely separated portions of the sky;

and it would be desirable to repeat these observations during another

orbital pass if time permits. Times of photographs will be dependent

upon the orbit of the CSM. CSM photographs will be taken between the

polar photographs, since the operation of pointing the survey camera is

of minimal difficulty and time requirement. (Photographing the CSM

from the lunar surface would be an optional operation and may not be

required if the SXT and dual LOS photographic method (see Section XI)

is available in the CSM. )

Distance to the reflectorized balloons will be determined by laser

ranging from the top of the LEM. The astronaut will range to each balloon

in turn, verbally tape recording the distance from the digital readout, and

the approximate direction according to a simple pelorus attached to the

113



instrument support. In addition, the astronaut will range to any discrete

natural features that return a signal, recording range, pelorus angle, and

a description of the feature observed to enable correct identification in the

photography.

Finally, the astronaut will replace the laser ranger with the panoramic

camera, noting the orientation of the camera with the pelorus, so that the

ranging may be correctly correlated with the photography. The procedure

for the panoramic photography is the most exacting in the entire system.

The camera will contain finely adjusted internal level vials (or vertical

sensing elements) of a sensitivity of better than I0 seconds of arc, with a

total latitude of no more than + 1 minute of arc. The camera support head

will be leveled by means of a level vial or vials attached directly to the

head. The camera is then attached to the head, the internal level sensors

centered and a photograph taken. The camera will then be rotated 180 °

about its vertical axis, the internal sensors again centered, and a second

photograph taken. These two photographs can be considered as one observa-

tion, since the mean of the two photographs will represent a panoramic

photograph with its horizon line correctly oriented with respect to the local

vertical. This is true even if the vertical sensing devices have not been

calibrated properly, since by duplicating the level condition in diametri-

cally opposed photographs the mean of the two will cancel the off-vertical

error. As the level vials (or vertical sensors) will be photographed, the

centering operation need not be precise; if the value of the level vial divi-

sions is known, the orientation of the photographs can first be corrected

to center the vials, subsequently paired to determine true vertical orienta-

tion.

As the two photographs diameterically opposed must be treated as one

observation, it will be necessary to take at least one more set of paired

photographs to provide redundancy in astronomic position determination.

Present practice with the zenith camera is to take at least three photo-

graphic pairs; experimentation on earth with the panoramic system, in-

cluding reading and reduction of the films, will indicate the number of

panoramic pairs necessary to yield varying degrees of statistical accuracy
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of astronomic position. This will be the deciding factor in the determina-

tion of the number of panoramic photographs to be taken, since two photo-

graphs should suffice for the horizontal and vertical angles to the targets.

In addition to these operations, gravimetric readings will be taken

inside the LEM.

The following results would be expected from this program:

I. Lunar Celestial Pole. From the photographs taken by the

precision frame camera of the polar region, the lunar

celestial pole can be deduced. See Section IV.

2, Selenographic Position. From the panoramic horizon photo-

graphs, astronomic position can be computed. From photo-

graphs of the CSM, selenocentric position can eventually be

determined after appropriate transfers between coordinate

systems have been derived. Depending upon accuracy obtain-

able of these two positions, comparison may give indication

of local deflection of the vertical. Gravimetric data may also

aid in the overall analysis of these two positions if anomalies

are small.

. Selenodetic Positions. Using the LEM as datum origin, posi-

tions of the balloon targets and any other discrete points can

be computed. Input for these computations will be range

(by laser ranger) and azimuth (from panoramic photographs,

oriented with respect to the lunar pole determined by pre-

cision frame camera) from the LEM.

. Elevations. Selenocentric elevation of the LEM will be de-

termined by analysis of both LEM - CSM positional relation-

ship and gravimetric data under the same conditions as in

item (Z) above. Relative elevation of points ranged to will
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be determined by range and vertical angle. Relative eleva-

tion to distant points, such as well-defined prominences be-

yond the near-horizon, can be deduced by range and vertical

angle, where the range would be determined from orbital

photography.

C. SYSTEM II UTILIZING CAMERAS AND STADIA

In this system the laser ranger is not utilized, and all measurements

are made photogrammetrically from the lunar surface as indicated in

Figure IX-Z. I Use of the precision frame camera for lunar pole determina-

tion and CSM photography is identical, as is use of the gravimeter. The

procedure of taking two diametrically opposed panoramic photographs

does not change, but use of the photographs does.

Under this system the astronaut will first hang two stadia rods from

the top of the LEM or rely on preestablished target points on the LEM for

photographic determination of a baseline. (See Section VIII. ) He then

projects four balloons to a distance of only about Z. 5 km, so that they are

visible from a height of about 5 feet.

The first camera station A, is established approximately I00 feet

distant from the LEM in a northerly direction (or southerly if the landing

site is in the southern hemisphere). (See Figure IX-Z.) The astronaut will

select this position by orienting himself by the stars and determining dis-

tance from the LEM by using his stadi-viewer. A camera support will be

set up on the lunar surface at this point, the support head leveled, and

the precision frame camera attached to the support head. The first photo-

graph will be of the LEM and its associated stadia rods. The camera will

remain at this position and be used for the polar and CSM photography, as

previously described, until it is replaced by the panoramic camera at the

end of the mission.

The second camera station B, will be about 600 feet (200 meters) east

or west of the LEM and first station. Its position will be selected by the
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TATION "A"

/ i. Photograph I_

/ 2. Photograph cir-

/ cumpolar stars

/ 3. Photograph CSM-

/ star field

/ 4. Panoramic photos

of landscape and

I near-horizon stars

I

I
I

I
I

I
I

I
I
I

I

CAMERA STATION "B"

___--___Z_OO__m_.__ . Panoramic photos
of landscape and

3 5 m.---_ near-horizon stars

LEM

/

Survey Targets /

(Reflectorized Balloons )

Suggested Survey Plan for Selenodetic Measurements - System II

FIGURE IX-2
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astronaut using the stars and the stadi-viewer. After setting up and leveling

the support, the panoramic camera will be attached to the support head, and

a panoramic photo pair will be taken as described under System I.

Just before the end of the final excursion, the astronaut will return to

station A, take his last polar photograph, and remove the precision frame
camera from the support. He will then replace it with the panoramic camera

and take a panoramic pair from this station.

The following results would be expected from this program:

1. Lunar Celestial Pole. Same as under System I.

2. Seleno_raphic Position. Same as under System I, except

that redundancy of astronomic position would be provided

by comparison of two positions {A and B) selenodetically

tied, rather than repeated panoramic pairs at one station.

1 Selenodetic Positions. Using the LEM as datum origin,

positions of stations A and B will be determined by photo-

grammetric base expansion from the two stadia rods hung

from the LEM or by relying on preestablished target points

on the LEM. Positions of the target balloons and of any

discrete lunar features will be determined by intersection

from panoramic photographs taken at stations A and B.

With stations A and B, however, accurate positioning can

only be accomplished in a northerly and southerly direc-

tion (see Section VIII).

o Elevations. Same as under System I, except that range to

all near-horizon features will be determined by photogram-

metric intersection.
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D. SYSTEM II EXTENDED TO ADDITIONAL STATION

Considerable advantage would be gained by establishing and utilizing a

third station C (in the same manner as B), as shown in Figure IX-3 which

would permit accurate positioning in all directions and would increase

certainty of accomplishing a good baseline in any direction. The trade-

off, however, is the time required, which is increased by occupying the

third station. (See comparison in Table IX-5. )

E. RECOMMENDED PRIORITIES

Requirements for space, weight and time allotments in other dis-

ciplines may restrict selenodetic operations to the extent that some of the

procedures will have to be curtailed. Therefore the following priorities

are assigned, on the assumption that there will be more than one mission:

1. Of primary importance is determination of the lunar celestial

pole, which, if it can be repeated on later missions, will aid

substantially in refinement of knowledge of the motion of the

moon, and will provide the basis for an accurate astronomic

position at the LEM landing site {see next item 2).

Z. The accurate astronomic position of the LEM and the astro-

nomical azirrluth to at least one other identifiable point are

important to provide an initial datum for selenodetic opera-

tions.

o Positioning of additional points in relation to the LEM will

provide accurate local scale for orbital photography. This

operation should receive priority ahead of 1 and Z above if

the Lunar Orbiter is a failure or the CSM SXT operation is

not provided. For this the complete System I or System II

would be required.
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CAMERA STATION "A" _ _&jCAMERA STATION "B"
1. Photograph LEM _ ._ 200 m. 1. Panoramic photos

2. Photograph cir- _J, / of landscape and

cumpolar star _, / near-horizon stars

fleld ,,

3. Photograph CSM- LEM ', /

star field " /

4. Panoramic photos ,,/
of landscape and

near-horizon stars _'-CAMERA STATION "C"

I. Panoramic photos

of landscape and
near-horizon stars

Survey Targets

(Reflectorized Balloons)

on horizon at -- 2.5 km

from LEM

Suggested Survey Plan for Selenodetic Measurement - System II Extended

FIGURE IX-3
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. Finally, accurate determination of the position of the LEM

relative to the CSM orbit will provide the selenocentric

radius which could be adopted as vertical datum. This

operation should receive the first priority, if the CSM

SXT is not provided.

Table IX-1 lists recommended priorities showing instrument and

time requirement for each operation.

F. TENTATIVE OPERATIONAL PROGRAMS

The following three tables outline tentative programs of lunar surface

operations which make use of the alternate systems described above. Table

IX-Z presents a program for System I; Table IX-3 presents a program for

System H; and Table IX-4 presents the extended program for System II.

These programs assume that three excursions_ will be made on the

lunar surface by one astronaut at a time, spread over a period of 15 hours

and 5 minutes, the excursions to be of 96 minutes, 154 minutes and 13Z

minutes duration. It is also assumed that the astronaut remaining inside

the LEM will be available for gravimetric observations.

The programs contain repetitive operations; these are included for

purposes of normal geodetic redundancy, as well as a safety factor of

doubling the minimum number of required photographs. This would

permit variation of exposure time or aperture to ensure reliable cover-

age.

Table IX-5 provides a comparison of the three systems, summarizing

the estimated time of the survey operations for each lunar excursion and

estimated equipment weights and bulk.

;_ Apollo Mission Planning Task Force, Phase I Progress Report, Vol. llI,

dtd. 4 May 1964. Grumman Aircraft Engineering Corp.
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Instrument

Laser Ranger
Panoramic Camera

Precision Frame Camera

*Gravimeter

Tota_ (Est.)

TABLE IX-2

TENTATIVE OPERATIONAL PROGRAM

FOR

LUNAR SURFACE MEASUR_NTS

SYST_ I

System Equipment

Bulk

(cu. ft.)

1.2

0.9

0.3

0.I

2.5

We ight

(ibs.)

15

15

5
1

36

Auxiliary Equipment

Balloon Launcher

5 Balloons (Survey Targets)

iCamera Support (Top of LEM)

Camera Support (Lunar Surface)

Bulk We ight

(ou.ft.)(lbs.)

i .2 15

o.o5 5
0.I 2

1.7 27

I

I

I

I

I

I

Event

Station No.

Top of LEM I

Surface 2

124

4

7

System Program

Time

Description of Procedure (mins.)

Excursion I

Observe lunar landscape to select balloon sites

Select precision frame camera position and

carry camera and support to it

Erect camera support; secure to lunar surface;

level support head

Secure camera to support head, point toward

pole (frame 4/5 sky, 1/5 landscape); screen

landscape

lO

3

Place balloon launcher in launching position 5

Launch five balloons to previously determined
locations 10

Return to precision camera; check orientation,

take 4 lunar pole photographs; remove screen 5

I

I

I

I

I

I

I

!

I
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I

Station

Event

No.

8

Top of I_ 9

lO

ll

12

13

Top of 14

15

16

17

18

19

2o

21

22

23

TABLE IX-2 (Cont 'd)

TENTATIVE OPERATIONAL PROGRAM FOR

LUNAR SURFACE _S - SYSTEM I

Time

Description of Procedure (mins.)

_*Point camera toward CSM, take CSM-star photograph;

repoint, take second photograph; repoint, take

third photograph; repoint, take fourth photograph 12

Erect instrument support and level support head 5

Secure laser ranger to support head 2

Range to five balloon targets, recording distance,

pelorus direction, and estimated azimuth lO

Range to discrete natural targets, recording

description, distance, pelorus direction and
estimated azimuth 15

Remove laser ranger, leaving support undisturbed 1

Excursion 2

Check level of instrument support head 1

Secure panoramic camera to head; center precise
vertical sensors 5

(Allow time for camera to stabilize in lunar

environment: l0 mins. ) ***

Center vertical sensors; verify camera stability;
note orientation with respect to pelorus 3

Take two panoramic photographs 1

Center vertical sensors; take two panoramic

photographs 2

Center vertical sensors; take two panoramic
photographs 2

Rotate camera 180°; center vertical sensors

Take two panoramic photographs 1

Center vertical sensors; take two panoramic
photographs 2

IZ5



Station

Surface

TABLEIX-2 (Cont 'd)

TENTATIVEOPERATIONALPRDGRAMFOR
LUNARSURFACEMEAS_NTS - SYSTEMI

Event
No.

2_

25

Time
Description of Procedure (mins.)

Center vertical sensors; take two panoramic
photographs 2

Removecasette; discard camera and instrument
support 3

Excursion 3

26 Return to precision camera, point camera toward

pole (frame &/5 sky, 1/5 landscape); screen

landscape, take & lunar pole photographs;

remove film pack; return to LEM

* Gravity readings will be taken with gravimeter inside LI_:

2 readings, approximately 5 mins. per reading.

Photographs of CSM will be dependent upon its position;

at least three photographs should be taken in widely

separated portions of sky. Photographs will not be

taken if LEM is positioned by CSM instrumentation

(SXT dual LOS photography).

*** Time not charged against this event as the event can
be used for other purposes also. Time required is in-

cluded, however, in total elapsed time of the program.
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TABLE IX-3

TENTATIVE OPERATIONAL PROGRAM

FOR

LUNAR SURFACE N_ASUREN_NTS

SYSTEM II

System Equipment

Instrument

Panoramic Camera

Precision Frame Camera

*Gravimeter

Totals (Est.)

Bulk Weight

(cu.ft.) (Ibs.)

I

o.9 15

o.3 5

i O.I i

1 -1.3 21

Auxiliary Equipment

Balloon Launcher

4 Balloons (Survey Targets)

2 Camera Supports
2 Stadia Rods

System Program

Station

Top of L_

Surface

L_ to A

A

Event

No.

I

!

2

3

4

5

6

7

8

Bulk

(cu. ft.)

1.2

O.04

0.9o

2.4

Time

Description of Procedure (mins.)

Excursion I

Observe lunar landscape to select balloon sites 5

Hang 2 stadia rods on L_ 5

Place balloon launcher in position 5

Launch 4 balloons in predetermined pattern I0

(Walk to approximate Station A carrying precision

frame camera and support: 3 mins.) ***

Select Station A using stadi-viewer for distance 2

Erect camera support; secure to lunar surface;

level support head; secure precision frame

camera to head IO

Point precision frame camera to L_; photograph

LEM and stadia rods 4

Point precision frame camera to lunar celestial

pole (4/5 sky, 1/5 landscape); screen landscape;

take 4 pole photographs; remove screen 6

Weight

(Ibs.)

5

h

I0

2

31
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Station

AtoL_

LEM to B

B

B toLEM

LEM to A

128

TABLE IX-3 (Cont'd)

TENTATIVE OPERATIONAL PROGRAM FOR

LUNAR SURFACE MEASUREMENTS - SYSTEM II

Time

Description of Procedure (mins.)

Event

No.

10 _*Point precision camera toward CSM; take CSM-star

photograph; repoint and take second photograph;

repoint and take third photograph; repoint and
take fourth photograph 12

ll (Return to L_: 2 mins.)

Excursion 2

12 (Walk to approximate B carrying panoramic camera
and support: 12 mins.)

13 Select position of B using stadi-viewer for

distance

14 Erect camera support; secure to lunar surface,

level support head

15 Secure panoramic camera to support head; center

precise vertical sensors

16 (Allow time for camera to stabilize in lunar

environment: lO mins.)

17 Center vertical sensors again; verify camera

stability

18 Take two panoramic photographs

19 Rotate camera 180°; center vertical sensors

20 Take two panoramic photographs

21

3

10

3

1

4

l

Remove panoramic camera, leaving support 1

22 (Return to LEM: 8 mins.)

Excursion 3

23 1 (Walk to A: 2 mins.)
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I
III

Station

A

Ato LEM

Event

No.

24

25

26

27

28

29

3O

31

32

33

TABLE IX-3 (Cont 'd)

TENTATIVE OPERATIONAL PROGRAM FOR

LUNAR SURFACE MEASUREMENTS - SYST_ II

Description of Procedure

Just prior to end of mission, point precision frame

camera to lunar celestial pole (4/5 sky, 1/5 land-

scape); screen landscape; take 4 pole photographs;

remove screen

Remove film pack, remove and discard precision
frame camera

Secure panoramic camera to support head;

center precise vertical sensors

Time

(mins.)

6

2

5

(Allow time for camera to stabilize in lunar

environment: I0 mine.) ***

Center vertical sensors again; verify camera

stability 3

Take two panoramic photographs I

Rotate camera 180°; center vertical sensors 4

Take two panoramic photographs 1

Remove casette 1

(Return to L_M: 2 mine.) ***

* Gravity readings will be taken with gravimeter inside LEM:

2 readings, approximately 5 mine. per reading.

** Photographs of CSMwill be dependent upon its position;

at least three photographs should be taken in widely

separated portions of sky. Photographs will not be

taken if _ is positioned by CSM instrumentation

(SX_ dual LOS photography).

Time not charged against this event as the event can

be used for other purposes also. Time required is in-

cluded, however, in total elapsed time of the program.
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TABLE IX-4

TENTATIVE OPERATIONAL PROGRAM

FOR

LUNAR SURFACE MEASUREMENTS

SYSTEM II (Extended)

System Equipment

Instrument

Panoramic Camera

Precision Frame Camera

*Gravimeter

Totals (Est.)

Bulk

(ou.ft.)

o.9

0.3
o.I

1.3

We ight

(Ibs.)

15
5
I

I

21

Auxiliary Equipment

Balloon Launcher

4 Balloons (Survey Targets)
3 Camera Supports
2 Stadia Rods

Bulk We ight

(cu.ft.)i(lbs.)
h,

i .2 15
o.o4 4
1.3 15
•3 2

2.8 36

I
I

I
I
I

I
I,

I

System Program

Event Time

Station No. Description of Procedure (mins.)

I

I

Various I-II

Excursion 1

iSame as System II (Table IX-3)

Excursion 2

Various 12-22 Same as System II (Table IX-3)

Excursion 3

LEM to C

C

23

24

25

26

27

(Walk to approximate C carrying panoramic camera

and support: 12 mins.)

Select position of C using stadi-viewer for distance

Erect camera support; secure to lunar surface; level
support head

Secure panoramic camera to support head; center
precise vertical sensors

(Allow time for camera to stabilize in lunar

environment: IO mins.)

I 59

28

10

I

I
I
I

I
I

I
I

L
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TABLE IX-4 (Cont'd)

TENTATIVE OPERATIONAL PROGRAM FOR

LUNAR SURFACE MEASUREMENTS - SYSTEM II (Extended)

I

I
I

I
I
I

I
I

I
I
I

I

!

Event Time

Station No. Description of Procedure (mins.)

28 Center vertical sensors again, verify camera

stability

29 Take two panoramic photographs 1

30 Rotate camera 180°; center vertical sensors 4

31 Take two panoramic photographs • I

32 Remove panoramic camera, leaving support I

C to A 33 (Return to A via I_: 8 mins.)

A 34

35

36

37

38

39

4o

Just prior to end of mission, point precision frame

camera to lunar celestial pole (4/5 sky, 1/5 land-

scape); screen landscape; take h pole photographs;
remove screen

Remove film pack, remove and discard precision
frame camera

Secure panoramic camera to support head; center
precise vertical sensors

(Allow time for camera to stabilize in lunar

environment: I0 mins.)

Center vertical sensors again; verify camera

stability

Take two panoramic photographs

Rotate camera 180°; center vertical sensors

6

2

5

3

1

4

I41 Take two panoramic photographs

42 Remove casette 1

A to _ 43 (Return to LEM: 2 mins.) *_-_
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TABLE IX-5

COMPARISON OF TENTATIVE SYSTEMS

FOR SELENODETIC MEASUREMENTS

Item System I System II

Place of

Operation

Extent of

Lunar Sur-

face Surveyed

Redundancy

¸Time

(Mins.)

Excursion i

Excursion 2

IExcursion 3

Total

We ight
(ibs.)

Bulk

(cu.ft.)

Entire operation
can be conducted

from top of LEM

if necessary

Provides position of
limited number of

selected targets up

to 5 km. distant

Results dependent

upon correct cor-

relation of ranges

with targets; pos-
sibility of mis-
identification of

points

Total

Event Elapsed
Time Time

84 84

26 56

8 8

System requires a sur-

face excursion of up
to _ 200 meters dis-

tance from L_

Provides position of

most landscape fea-
tures and artificial

targets up to 2.5 _n.
distant

Results dependent

upon analysis of

photographs alone;
no chance of mis-

identifications

Total

Event Elapsed
Time Time

59 64

28 58

23 37

System II (Extended)

System requires 2
surface excursions

of up to_ 200
meters distance

from I_

Provides position of

all landscape features

and artificial targets

up to 2.5 km. distant

Results dependent

upon analysis of

photographs alone;
no chance of mis-

identifications

Total

Event Elapsed
Time Time

59 64

28 58

51 93

I18 128

63

4.2

llO 159

52

3.7

138 215

57
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SECTION X

ANALYSIS OF LUNAR ORBITER MAPPING PHOTOGRAPHY

A. INTRODUCTION

As stated in Section I. B, "Support of Mapping Programs", selenodetic

measurements should both take advantage of and serve to improve the accur-

acy of lunar mapping derived from photography obtained by lunar orbiting

vehicles. Therefore, mapping accuracies that could possibly be obtained

from currently planned Lunar Orbiters were investigated to make certain

that measurements would not be recommended which would be accomplished

better by Lunar Orbiters, and to determine what support could be given to

Orbiter missions that would further enhance their utility.

As presently planned, the Lunar Orbiter program consists of a series of

five photographic reconnaissance missions scheduled to begin late in 1966.

Photography will be taken in the lunar region of + i0 degrees latitude and

+ 60 degrees longitude at 50 km heights above the moon's surface with two

camera systems; one with a high resolution 24-inch focal length camera in

order to obtain the greatest amount of lunar surface detail and texture, and

the other a lower resolution 3-inch focal length camera which will be trig-

gered to provide normal 55% overlap stereo coverage for mapping purposes.

Ground resolutions of I-8 meters are expected with these camera systems from

the 50 km heights. Although the areas to be photographed have not been final-

ly chosen at this time, the mapping photography will probably provide photo-

graphic coverage and, therefore, map coverage of one 200 km x 200 km area

per mission within this region of some 2,200,000 square krn.

B. RESULTS OF ERROR ANALYSIS

The detailed error analysis made in connection with this study, which is

presented in Appendix A, shows that within each 200 km x 200 km area sur-

veyed by the presently planned Lunar Orbiter, precisely identified landmark

features could be positioned with a relative accuracy of + 65 meters in the

horizontal plane, and 2-3 times as large as this in the vertical plane.
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These features can in turn be tied to the mapping system of the control

points with a horizontal error of _.+ 30 meters to _+ 250 meters, depending

upon the accuracy and number of control points available. The latter error

is defined as the "zero-point" or systematic error in fitting the surveyed

area to the map system as a whole. The magnitude of this error as a func-

tion of the number and accuracy of control points is illustrated in the graph

below.

5001

= LU
_--Z
Z _ 40O

hA _ 300

0 _200

W_

,oo

/

N= number of ovoiloble control _

/
_o

200 I 400 600 800 tO00 (Meters)

0 30 ° 60 ° (Lot- Lono.)

CONTROL POINT ERRORS

Expected positionol error in fitting Orbiter photogrophy to

mop control coordinote system.

As shown by the graph, to approach the low end of the range of un-

certainties (_+ 30 meters), it would be necessary to provide 100 control

points (landmarks with known coordinates) having an accuracy somewhere

around + 200 meters in a selected coordinate system. Projections of NASA-

MSC, however, indicate that there will be at most only one control point

available per square degree on the lunar surface, or about 40-50 control

points per 200 km x 200 km area. Also these control points will have an

accuracy of + 200 meters at the center of the visible face of the moon, de-

grading to approximately + I000 meters toward the limb. Therefore, a

systematic error in horizontal component of the "zero-point" of a surveyed
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region would probably be approximately + 80 meters on the average. The

estimated total positional error for any individual lunar feature within a

200 km x 200 km area would then be the combined systematic error and rela-

tive positional error or j80Z + 652 _100 meters. Also, the expected

positional relationship or tie between lunar features from one 200 km x 200 km

survey area to another would be on the order of 140 meters.

Thus a method which will provide control points that (i) would be of a

higher degree of accuracy, (ii) would be of a consistent accuracy over the

face of the moon, whether it is near the center or near the limb, or (iii)

could be chosen and distributed over the face of the moon in such a way as

to tie 200-kin squares together would be of value. Investigations of means

of establishing such control points by SXT observations from the orbiting

CSM while the LEM is on the lunar surface, were made and are presented

in the following Section XI.

The analysis of orbital photography in Appendix A also points out that

if the configuration of the Lunar Orbiter camera system could be substan-

tially modified so that the photographic instrument would consist of two

cameras mounted "back-to-back" and whose optical axes are parallel to

each other, considerable improvement in accuracies could be obtained. If

both cameras are triggered simultaneously, one would photograph the moon

and the other the sky as a reference field. This technique, which is developed

in some detail, shows that whereas in the present configuration + 65 meters

seems to be the average relative accuracy in horizontal plane that could be

achieved, with the back-to-back camera the corresponding error would be

approximately + 35 meters in horizontal plane. In both instances, the in-

accuracy of the altitude is about 2 to 3 times as large.
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SECTION XI

USE OF OPTICAL EQUIPMENT ON BOARD THE CSM
FOR SELENODETIC OPERATIONS

A. INTRODUCTION

Use of the presently planned Space Sextant (SXT) and Scanning

Telescope (SCT) on the CSM for accurately locating the LEM and widely

distributed lunar landmarks with respect to the CSM has been considered

as a means for extending control over large regions of the lunar surface

during the early Apollo missions. If directional sightings of landmarks

can be obtained through the SET, itwould be possible {as is well known}

to use known positional data from the CSM orbit, together with the meas-

ured orientations of the SXT lines of sight to determine or improve the

positional interrelationships of lunar features along the orbital path of

the CSM, that is, the "ties" between the features and positions of the CSM,

and hence of one feature with another, all in the geodetic sense. If the

sightings are obtained by photographing landmarks and reference stars

through the SXT and simultaneously recording the times and angles of

these sightings, the postflight measurement of the photographs and

analysis of the resulting data should yield results vastly superior in

accuracy to visual settings. As well as improving mapping control,

this procedure would make it possible to upgrade the positional ac-

curacy of selected navigational references which may be needed for sub-

sequent lunar missions.

The following paragraphs present an analysis of, first, the con-

ceptual feasibility of such an approach, and, second, the adaptability of

the equipment itself. In the first part, the probable magnitude of the

errors is discussed, and several seemingly possible operational pro-

cedures are outlined.

B. ANALYSIS OF CONCEPT

1. Review of SXT Properties

The SXT has the following properties: (1) It can superimpose
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the images of two different fields, up to 57 ° apart in direction. (2) It

can measure the angle between the lines of sight of the fixed and mov-

able arms with a precision of + 20" (l:104), without reference to the
m

inertial axes provided by the IMU. (3) It seems feasible to photograph

the superimposed fields and to record the angle with a precision of

+ 20" and the time of mid-exposure with a precision of + 0.01 sec.,

which corresponds to + 16 meters at an orbital velocity of I. 6 kin. /sec.

(4) The magnification is large enough so that errors of measuring the

photograph would be small compared to 20". This judgment is based

on the fact that angular errors of photographic measurements due to

all optical and photographic causes lumped together are usually about

+ 100"/(f in cm). (5) The SCT, with IX magnification and 60 ° field,

is useful chiefly for pointing the movable arm of the SXT, since these

two movable telescopes can be ganged together. (All uncertainties

given in this sketch are estimates of Icr ).

2. Characteristics of a Single Sighting of a Landmark

A single observation of an angle (landmark-CSM-star) would

locate the landmark on a cone in space. The vertex of the cone would

be at the position of the CSM (which is determined from terrestrial

tracking data and the time of the observation). The axis of the cone

would be pointed toward the star, and the vertex half-angle equal to

the observed angle (see Figure XI-1). Such a cone is a "surface of

position, " analogous to a "line of position" in two-dimensional navi-

gation or surveying.

Two such observations determine two cones, which intersect

in a curve in space; and a third observation yields a third cone which

intersects this curve in at most two points. One of the two points

could not be an actual solution for the fix of the landmark, but it will

in general be perfectly obvious which of the two intersections is the

actual solution. Therefore, three observations of angles, landmark-
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CSM-star, will give a three-dimensional fix on the landmark; that is,

the intersection of the three cones will yield the coordinates of the

landmark in the same system of selenocentric coordinates that the

orbit of the CSM is referred to. The three observations of angle

can be made with respect to the same star, or different stars. (If

the same star is used, the direction from the CSM to the landmark

should be chosen to be quite different, for reasons discussed below. )

The "landmark" can be the LEM on the ground; that is, the grounded

LEM is only a special case of a landmark.

(a) Sketch of error analysis. Assume that the error of a single

measurement of an angle, landmark-CSM-star, is + 20", or 1:104 .

(The actual value is of no great importance for this discussion; if

the error turns out to have some other value + _ ", all results can

be scaled up or down by the factor •/20. )

fines

A single such sighting observation {as described above) now de-

a conical shell in space, (rather than a cone), with:

Axis in the direction of the star;

Vertex at the position of the CSM;

Half-angle of the vertex = the observed angle (landmark-CSM-
star);

Thickness of.the shell at any distance or slant range r from the
CSM = 2r/104.

The effect of these errors on location fixes will be discussed

in detail below.

3. Characteristics of Multiple Sightings on a Landmark

We have already seen that three sightings, leading to three inter-

secting conical surfaces of position are the minimum number necessary

for a three-dimensional fix. The errors of the fix will depend, not only

on the errors of each sighting, of the type discussed in paragraph Z

above, but also on the "geometry-" of intersecting surfaces.
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A prerequisite for a strong geometric solution for a fix is that the
normals to surfaces of the intersecting cones, along the curve where

the cones intersect, are as nearly perpendicular to each other as can

be achieved. (See Figure XI-2.) The uncertainty of the fix in the direc-

tion bisecting the acute angle between such pairs of normals varies ap-

proximately as the cosecant of the angle between the normals. Thus,
other things being equal, if the angle were as small as 30° the pre-

cision would be degraded by a factor of Z.

Two sighting observations, each subject to an angular r.m.s.
error of + ZO", define the intersection of two conical shells with an
angular thickness of 2 a = 40", or a thickness of 2r/104, tapering to

zero thickness at the vertex. This intersection may be thought of as a

curved tube. If the shells intersect nearly orthogonally (as defined

above}, and if they have the same thickness Zr/104, the cross section

of the tube perpendicular to its own axis will be nearly circular, with

radius r/104 . {See Figure XI-3a.) If the intersection is at an acute angle

0, the cross section of the tube will be elliptical, with the semi-minor

axis (which is in a direction approximately bisecting the obtuse dihedral

angle between the surfaces} equal to about r/104 and semi-major axis

approximately r/104 x cot ( 0 /Z). (See Figures XI-3b and 3c.) Obviously,

when 0 is very small, the major axis of the error ellipse is very large,

and as 0 approaches 0 °, one approaches the case of superimposed

shells obtained from repeating a single observation. (See Figure XI-3d. )

The intersection of two cones of unequal thickness 2rl/104 and

2r2/104 (corresponding to two different slant ranges, r l> r2), defines

a tube of more or less elliptical cross section, with semi-major

axis_'rl.csc0/104 and semi-minor axis_-- rz/104. (See Figure XI-3e.)

Again the smallest dispersion (least cross section of the tube) results

when 0 = 90 ° and the largest when 0 = 0 ° • (The same results would

follow if the anguIar errors, rather than the slant ranges, were dif-

ferent for the two sightings. )
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Intersection of such tubes (either circular or elliptical in cross

section) with a third conical shell of thickness 2r3/I04, generated by

an observation of a landmark from slant range r3, will result in an
error ellipsoid. (See Figure XI-3f.) The length of the three semi-

axes depends on the thickness of the three shells, and the angles with

which they intersect.

Figure XI-3 is an attempt to illustrate all the various foregoing
possibilitie s.

(a) Effect of uncertainties in CSM position. All uncertainties

of position discussed in this Section are uncertainties relative to the

"position of the CSM", as determined by post-analysis of the DSIF

tracking data. The uncertainty of a single instantaneous "ephemeris"

position of the CSM (i. e., selenocentric - i' Hi' Zi' all calculated

for a t'Lme ti) is assumed to be + 100 m in each dimension relative to

the tracking station. If] This degree of precision can be achieved

only after accumulation of tracking data over some tens of revolu-

tions and use of these data to obtain a "best fitting" selenocentric

orbit obeying Kepler's laws (with perturbations) around the center of

mass (or center of attraction) in the Moon. The foregoing statements

now require some qualification.

The coordinates of CSM obtained from the tracking data will in the

first instance be referred to the coordinate system of the tracking station.

If the station coordinates with respect to the Earth's center of mass are

known, an immediate transfer to geocentric coordinates can be made.

[In principle, the coordinates of the tracking station with respect to the

Earth's center of mass can be obtained (or improved, if already known)

from the tracking data together with an application of the laws of celestial

mechanics; this procedure has in fact been carried out in practice.] Final-

ly, the trajectory of the CSM relative to the center of mass of the Moon
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can be accurately obtained if the coordinates of the Moon's center of

mass relative to the Earth's center of mass are accurately known. Geo-

centric coordinates of the center of mass of the Moon are at present un-

certain by 1 to 2 km. This uncertainty may well be reduced by the time

of the first Apollo manned lunar missions. Even if the geocentric co-

ordinates of the Moon are unknown, however, after a lunar orbiter or

the CSM has been tracked in geocentric coordinates for a number of

revolutions, a solution of the orbiter or CSM trajectory aroundthe Moon's

center of mass can be made which will locate the Moon's center of mass

in geocentric coordinates. In either case, another transfer of coordi-

nates can then be made, this time to a new origin at the Moon's center.

(See Section HI for a more detailed treatment of these problems. )

The terms of reference of the expression, "position of the CSM, "

used above, also require examination. In all possible schemes of ob-

serving angles with the SXT, the observations of a given landmark are

made from separate points along the CSM orbit, at separate instants in

time. In some of the schemes for observing, the individual observa-

tions will be separated by only 1 to 15 minutes (a single pass), which

corresponds to a distance of 100 to 1400 kin. In other schemes, in-

dividual observations are separated by one or more whole orbital

revolutions, each about 2 hours long. From these separate times and

positions, one would calculate the positions of the cones of position

that intersect at the landmark. The vertices of these separate cones

of position are at the CSM ephemeris positions at times t l, t 2 .... t n,

so that the locations of the individual vertices are subject to same

errors as the CSM position. If times tl, t 2, etc. are separated by

intervals only minutes long, errors of the CSM positions at those

times are certain to be correlated; so that contribution to the un-

certainty of the coordinates of a landmark fix based on the intersection

of conical surfaces will probably be almost as great as the full + 100 m

of a single instantaneous CSM position. As the separation in time of the

observations at t l, t2, .... tn becomes longer, it is to be expected that
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the degree of correlation among errors of the individual CSM positions

will decrease, so that the contribution of this source to the overall

uncertainty of position of a landmark may then approach + 100/J--_,

where n is the number of individual sightings.

(b) Restrictions on the _eometry: Upper and lower limits on slant

range.. The least slant range at which a landmark can be observed is

set by the largest angle that the SXT can measure, which is 57 ° . If

one arm of the SXT is trained on a star close to the visible horizon,

then the other arm can reach a landmark 57 ° below the horizon in

vertical angle. At a height of 148 km (80 nm), the dip (vertical angle)

of the visible horizon below the horizontal plane (plane orthogonal to

the gravity vector) is nearly 23 °, so the landmark is 23 ° + 57 ° , or

about 80 ° below the horizontal plane. It is therefore l0 ° from the

nadir of the CSM, as viewed from the CSM. The slant range from

the CSM to the ground, l0 ° from the nadir of the CSM, is 151 kin,

and this is the smallest possible slant range. There is thus a "blind

cone, " whose axis is the vertical through the CSM and its subsatellite

point, and whose half-angle is l0 ° from the nadir. The SXT cannot

be brought to bear simultaneously on a landmark inside this cone and

on a star.

The greatest slant range is the distance to the horizon. From a

height of 148 kin, this range is about 732 kin. Whether a landmark can

actually be accurately observed at such an extreme range depends on its

visibility. For the time being, we shall assume that it is possible. The

LEM could in any case be made visible by equipping it with a bright light-

beacon or properly designed reflectors.

4. General Principles for Ensuring "Good Geometry"

Certain general principles can be laid down for making the three

independent sighting observations on a given landmark in such a way
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that the three resulting cones of position will intersect each other

orthogonally at the landmark. It will not always be possible to put

into practice the recipe for orthogonality. The observing schemes

suggested below will in most cases constitute compromises between

strict adherence to the recipe for orthogonality, and the practical

limitations imposed by the relationship between the orbit and the land-

marks and by the necessity to avoid unnecessary changes in the attitude

of the spacecraft and similar operational constraints.

The general principles for producing three orthogonal cones of posi-

tion can best be understood by referring to Figure El-4. This figure

shows a celestial sphere in altazimuth coordinates centered on {with

origin at) the spacecraft labelled O in the figure. Y is the spacecraft

zenith and Y' the nadir. The great circle XZX' represents the hori-

zontal plane through the spacecraft, with OK directed along the orbital

velocity vector. (The orbit is assumed to be circular and the velocity

therefore horizontal, but this point is not essential for the arguments

below. ) The axes OX, OY, OZ form a righthanded rectangular coordi-

nate system; and the zenith angle _ (arc distance from Y) and the

relative bearing B measured in the OXZ plane from OX toward OZ

correspond to the usual spherical coordinate angles. The slant range

r measured along a radius from O constitutes the third spherical co-

ordinate. Instead of the zenith angle _ , one may also use the (angular)

altitude A ( = 90 °-_) or the nadir angle N ( = 180 ° - _ ).

The small circle HIHzH 3 represents the visible horizon as seen

from the spacecraft, and is parallel to the XZ plane, at a "dip angle"

(vertical angle) equal to the arc XH l below it. At an orbital height of

148 km (80 nm), the dip angle is nearly 23°; we shall use this value

for illustrative purposes. Three positions of the landmark relative

to the spacecraft are indicated at L1, LZ, and L 3.
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First, let us concentrate our attention on a sighting L Z, which

may be thought of as the second of a series of three sightings. At

this position, the landmark is at the point of closest approach of the

spacecraft, that is, at place where the nadir angle of the landmark

as viewed from the spacecraft is a minimum. (Also, in this figure,

the landmark is in the OYZ plane, at a relative bearing of 90 °.

Admittedly this is a special case, but this fact is not important to the

arguments. In any case, it will always he desirable to obtain at

least one sighting of a landmark as close to the spacecraft nadir as

possible. ) As we have seen, a star (such as SZ) , must lie above

HIH2H 3, so the arc ZS 2 cannot exceed 230; the SXT will not allow

the arc SzL Z (or any other similar arc SiLi) to exceed 57 ° , so that

the arc LzY' must be at least I0 ° in a real situation. The cone of

position for a sighting carried out in a situation like L 2 will inter-

sect the celestial sphere in an arc like MLzM'. This intersecting

arc together with the origin O define a plane OLzX or the great circle

XL2X', whose pole P is on the extension of the great circle arc LgS z

through the landmark and the reference star. (In this particular case,

this great circle happens also to be the vertical circle Y'ZY, but that

is immaterial. ) Alternatively, (I) one can think of an infinitesimal

plane element of the conical surface of position in the neighborhood

of the landmark LZ, and use the element to define the plane or great

circle XLzX' and its pole P; or (Z) one can think of the plane or great

circle XLzX' as being defined as the great circle tangent to the inter-

secting arc MLzM' at the point L 2. We shall label the cone, plane

element, intersecting arc, etc. "No. Z" when necessary to refer to

them.

The great circle XLzX' is the polar great circle to P. The in-

stantaneous drift line of the landmark as viewed from the spacecraft is

tangent to this great circle; in fact the whole drift path of the landmark

as viewed from the spacecraft (the dashed curve H1LzH3) lies in the
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general direction of this great circle, falling below it at the end points

(near H 1 and H3). If another conical surface of position were obtained

at L g with some other (perhaps hypothetical) reference star, lying any-

where on the great circle XLzX', such as S':_"in Figure Xl-4, its infini-

tesimal plane element would be orthogonal to that of cone No. Z, that is,

the dihedral angle between the two surfaces would be 90 ° at the point on

the intersection curve of the two cones where the intersection runs

through the landmark. This follows from the polar relations of the

two great circles.

Obviously, to qualify as a real sighting, the star S;:-_must lie with-

in 57 ° of the landmark, and also lie above the small circle H
IHzH 3 • If

L Z were close enough to HZ, so that the arc LzH' could be less than 57 ° ,

an arc like LzS_:-"could represent a real sighting.

But we need, or are looking for, not two, but three mutually

orthogonal intersecting conical surfaces, and only two are possible at

any one particular situation such as that presented by the spacecraft

at O and by the landmark viewed in a particular direction like OL Z. To

obtain three mutually orthogonal surfaces of position, it is necessary

to make at least one sighting in another direction, such as OL 1 (when

the spacecraft is approaching the landmark) or OL 3 (as the spacecraft

is leaving the landmark).

As a practical matter, it would be impossible to obtain two

simultaneous SXT sightings on a landmark at a particular position Z Z

with two different reference stars, such as S Z and S_':;, because it

would certainly take a minute or two to pick up the second star (which

requires reorientation of the spacecraft and stabilization in the new

attitude) after the first sighting was complete. This means that the

observer will have to wait at least one orbital period between the two

sightings to be made in the same direction, such as OL Z. Since
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he has to wait anyhow, symmetry (and certain other considerations that

will become apparent later) suggests that three separate sightings be

made, in three distinct directions OL 1, OL2, and OL3, with OL 2 made

as near the nadir as possible, and OL 1 and OL 3 symmetrically placed

with respect to OL Z.

Any sighting, such as OL 1 (which for convenience we shall label

sighting No. 1) will yield another surface of position orthogonal to

• sighting No. 2 along OL2, so long as the reference star S 1 lies on a

great circle L1S 1 perpendicular to the great circle L2S2P. L 1 can

be anywhere on the apparent drift path H"L 2. Strictly speaking, the

great circle L1S 1 for sighting No. 1 will lie slightly below the great

circle XL2, and its pole P' will lie slightly below the pole P along the

vertical circle YPZLzY'. The surface of position resulting from sight-

ing No. 1 is, of course, located in space. Although in the context of

Figure XI-4, in which the spacecraft is considered to be fixed at O and

the landmark to be moving fromH" to L 1 to L 2 to L 3, etc., one may

imagine the act of "carrying forward" surface-of-position No. 1 to

superimpose it on surface-of-position No. 2 this procedure is not

actually required.

Having picked two directions OL 1 and OL 2 and corresponding

directions to reference stars OS l and OS2, it is now necessary to find

a third direction OZ 3 and a corresponding direction to a reference

star OS 3 that will yield a third surface-of-position orthogonal to the

first two. Similarly to the situation regarding L1, and for similar

reasons, any sighting such as OL 3 with a reference star such as S 3

that lies on a great circle L3S 3 perpendicular to the great circle

LzS2P, will yield a surface-of-position No. 3 that is orthogonal to

surface-of-position No. 2. We further require that surface-of-

position No. 3 be orthogonal to surface-of-position No. 1. This is

most easily achieved by requiring that the sightings OL 1 and OL 3

be 90 ° apart, that is, that the angle L1OL 3 be 90 ° .
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(a) Symmetry and other considerations. If the direction OL 1 be

chosen very close to OL 2, in order to have two observations near

minimum slant range (i. e., in order to minimize the "thickness"

Z G = 2r/104 of the surfaces of position due to the angular uncertainty

of 20"), then it will be impossible to find a direction OL 3 that is both

perpendicular to OL 1 and also on the drift path. As a bare minimum,

it will be necessary to pick the direction OL 1 far enough away from

OL 2 to allow OL 3 to lie below the visible horizon HIH2H 3. In this

case, the observation at L 3 will be done at nearly maximum range,

and will have rather low weight. (Questions of weight will be dis-

cussed in greater detail below. ) By moving OL 1 even further from

OL 2, the slant range of L 1 will be increased a little, but the slant

range of L 3 can be decreased a great deal, so that the total weight

of the three observations will be considerably increased.

(b) Summary. The best compromise for optimizing the geo-

metry of a set of three sightings on a particular landmark, within

limitations considered so far, turns out to be as follows:

(I) Choose a "central" sighting observation (central in posi-

tion only, it need not be central in time between the other two) in a

direction OL Z corresponding to the direction to the landmark near

closest approach of the spacecraft, and a reference star in a direc-

tion OS Z which is on the same vertical circle as L 2.

(2) Choose the other two sightings in directions OL 1 and OL3, so

that these are perpendicular to each other, and each therefore about 45 °

from OL Z. The direction OL 1 is ahead of the spacecraft, at a relative

bearing between 0 ° to perhaps 60 ° for a landmark on the starboard side,

or 300 ° to 360 ° for a landmark on the port side. OL 3 is symmetrical

to OL 1 with respect to the coordinate plane OYZ, that is, behind the

spacecraft, at a relative bearing between about 120 ° and 180 ° for a

landmark passing to starboard, and between 180 ° and 240 ° for a land-

mark passing to port.

15Z

I

I
I
I
I

I
I

I
I

I
I

i
I

I
I
I

I
I
I



II

II
II

II
I

i
I

II
I

i
I

i
II

II

II
II
II

II

(c) Generalization of optimization procedures. Sighting observations

made according to the foregoing plan have somewhat more general proper-

ties that may prove useful in selecting an___y set of three mutually independ-

ent sightings, i.e., regardless of whether or not one of the sightings is

made near the point of closest approach, etc. Refer again to Figure Xl-4.

The infinitesimal plane of position from sighting No. 2 defined a great

circle XLzX' whose pole was at P. Now let us label this PZ" There

are corresponding poles for the other two sightings. Let us disregard

the fact that the drift path H"L2H" departs somewhat from the great

circle XLzX'; this is legitimate in view of (I) the fact that, if L I and

L 3 are each only 45 ° from L 2, the departure is really quite negligible

for our purposes, and (2) the fact that departures from orthogonality

must actually be quite large before the uncertainties are increased

significantly. (Remember that a I0% increase in uncertainty corres-

ponds to cosecant 0 ---" I. I0, or 0 %- 65 °. )

If we consider that the drift path and the great circle XL2X' are

the same, then the poles P1 and P3' defined respectively by the in-

finitesimal plane elements of cones-of-position Nos. I and 3 in the

neighborhood of the landmark, will lie on the great circle XL2X' ex-

tended. As viewed from the CSM, this great circle is the projection

against the sky of the angular drift motion of the landmark and passes

through the point X on the celestial sphere toward which the CSM is

moving. The reference stars S I and S 3 also lie on this great circle.

Since L 1 is 45 ° from L2, and P1 is 90 ° further along the same great

circle, Pl" will lie on the polar great circle of P2' 135 ° from L Z.

Similarly, l_ 3 will lie on the polar of P2' 135 ° along the polar great

circle from L 2, in the opposite direction from Pl" Thus, Pl' PZ

and P3 are at the vertices of a right spherical triangle.

This leads to a rule of general applicability in all situations:

(1) Let the drift path or the instantaneous angular motion of a

landmark approximately define a great circle, which we shall call
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the drfit-path great circle. Choose sighting directions OLI, OL2,

OL 3 along the drift path, with OL 1 and OL 3 approximately perpendi-

cular to each other, and OL Z (nearly) in the common plane between

them.

(2) The drift-path great circle has a pole, P2" The two other

poles P1 andP3 lie on this great circle. Reference star S2 should

lie on or near the great circle L2P 2. The direction OS 2 must be

within 57° of the direction OL2, but above the visible horizon HIH2H 3.

(3) Reference star S 1 for sighting No. 1 should lie on or near

the drift-path great circle, between L 1 and the pole PI' with the angle

S1OL 1 less than 57 °, but with S 1 above the visible horizon. Similarly,

the reference star S 3 for sighting No. 3 should lie on or near the same

great circle, between L 3 and the pole P3' with the angle S3OL 3 less

than 57 ° , but with S 3 above the visible horizon.

(d) Cautionary comments. A considerable amount of detail has been

devoted to the question optimizing the geometry of sightings to result in

orthogonally intersecting surfaces. Lest this leave the impression that

orthogonality is extremely important, it should be stated once more ex-

plicitly that departures from orthogonality up to 25 ° or so result in only

a 10% increase in the uncertainty. In general, if the landmark sightings

and their reference stars are kept within 15 ° to 20 ° of their ideal direc-

tion (with all directions being relative to each other}, the increased

uncertainties will be altogether insignificant. Considerably more lati-

tude will do no harm, in comparison with the size of the other errors

affecting the fix. Finally, it will not always be possible to find three

directions OL. and three reference stars S. that are located near the
1 1

ideal places. In practice, if it seems necessary to reduce uncertainties

resulting from poor geometry, it will usually be possible to do so by

supplying extra sightings to fill in the deficiencies. Some of these ques-

tions are taken up below.
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5. Concept of "Weight per Unit Solid Angle" as a Means of Planning

Sighting Ob ser vations

An ideal error ellipsoid (or sphere, if the errors are equal in all

directions) can be represented by three numbers, that is, the three dis-

persions a l' _ Z' and (7 3' in three mutually orthogonal directions.

One can picture this as three "rods" projecting from a common origin.

Let us first replace the a . by weights W. proportional to 1/a Z and
i l i '

set the length of the rods proportional to these weights. The scale of

weighting is of course to a certain degree arbitrary. One might give

unit weight to an ideal sighting observation made at minimum slant

range. At h = 148 kin, rmi n is about 151 krn, and if the angular un-

certainty of the sighting is Z0", the half-thickness of the surface of

position (which we might call "slab of position") would be 15 meters.

Then W = 1 would correspond to E l = + 15 m and the weights of other

observations would be given by the usual relation, W.1 = ( Ej / _ i )Z.

One observation gives one "slab of position", which locates the

landmark in one degree of freedom or one direction -- namely, per-

pendicular to the slab, or one might say, "inside the slab with a prob-

ability of 68% for 1 G " The location is completely unknown in the

other two directions, parallel to the faces of the slab. This fact

could be recorded as a rod, drawn from an origin in the appropriate

direction, with length equal to the weight. Three slabs intersecting

nearly ideally would result in three rods, more or less orthogonal,

and of length approaching unity on the weight scale. Non-ideally

intersecting slabs, or slabs corresponding to observations of low

weight, would result in a figure in which the rods are preferentially

in one direction, have lengths short compared to unity, etc. Figure XI-5

is an attempt at representing weight as a function of direction. One

could fill in deficiencies in the observing scheme that led to such

a figure, by making sightings to produce slabs of position, and there-

fore rods in Figure XI-5, to fill in those directions that are not well

represented in the error distribution (actually, weight distribution),

to make the weight distribution more nearly isotropic.

155



i

I
I

I
z z |

I

I

f_ ,q

_ Y Y |

x/" '

IDEAL NON-IDEAL

Orthogonal, with all

degrees of freedom

fixed with unit weight

All observations low-weight,

confined to X-Z plane. Re-

quires slabs in the X-Z

plane to fix in Y-direction

I

I
I

WEIGHT DISTRIBUTION OF A FIX AS A FUNCTION OF DIRECTION

156
FIGURE XI - 5



I

I
I

l
I

I
I

I
I

I
l
I

I

I
I
I

I

I
I

It will ordinarily be unprofitable to go to great lengths in trying to

achieve isotropy of weight distribution, for the same reasons given above

at the end of Paragraph 4. There may be cases, however, when it

is important to get an accurate fix on a landmark some distance off

the subsatellite track, that is, one whose minimum slant range is

still very large (say, several hundred kin), in which case all the

single sightlngs will have low weight.

To fill out the weight distribution in direction, one can use the pre-

cepts outlined in Paragraph 4. Figure XI-6 represents a rough-and-

ready device, whose use is intended to provide a crude but quick

means of determining and recording the bearing of the intersection

of a conical surface of position with the ground (the terrain), given the

position angle of the observation, and vice versa. Although the loca-

tion of the terrain level in the vertical direction is not necessarily

known, it will always be possible to make a sighting that produces

a surface of position that is nearly horizontal at the landmark. For

example, the observation can be made at a long slant range. The

visible ground surface serves merely as a plane to record direc-

tions on, and not as a substitute for a surface of position.

6. Observing Schemes

A wide variety of observing schemes is possible. Three schemes

will be outlined below; they are intended as examples, rather than pro-

cedures that have been tested and proved to be useful. They are intended

further to bring out certain practical considerations that depend on opera-

tional constraints: for example, the amount of time required per observa-

tion (which has a bearing on the efficiency of the observing scheme), the

number of spacecraft attitude changes involved, etc.

The availability of suitably bright reference stars in appropriate

directions affects all the schemes alike. The selection of stars for the
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sightings will be limited to some degree by the faintest stars that can

be photographed in a reasonable exposure time, and the number of such

stars available in a given region of the sky. We assume that it will be

possible to select stars suitable for sightings within a few degrees of

any chosen point in the celestial sphere. There are approximately

42,000 square degrees in the sky and about 400 stars brighter than

the 5th magnitude; therefore, one star brighter than the 5th magnitude

per 100 square degrees on the average. This implies that the bright

stars are separated on the average by about 10 °, so that it is likely

that one or more will be found within 5 ° of any random point. We also

assume that 4th magnitude stars can be photographed with a reasonably

short exposure. (Section II discusses the plausibility of these assump-

tions. )

The three examples of observing schemes are labelled respec-

tively "A", "B", and "C". Observing Scheme "A" is intended for use

in those cases where one might wish to concentrate on fixing the loca-

tion of a relatively small number of landmarks, close to the subsatellite

track. Observing Scheme "B" provides a possible procedure for ob-

serving a larger nurhber of landmarks, none very intensively, and

ranging in position from close to the subsatellite track to perhaps 200-

300 km away. Observing Scheme "C" is intended for the observation

of remote landmarks, from the slant range where "B" leaves off up

to the maximum possible, which coincides with the visible horizon.

7. Observing Scheme "A" for a Fix on a Single Landmark

There will be situations where it is important to obtaixl, early in

the mission, an accurate fix on a single landmark, not too far from the

subsatellite track, devoting as little time as necessary for getting a

complete fix. The grounded LEM is a good example of such an important

landmark; it is important not only because it will serve as the interim

datum to tie the surface survey to the coordinate system of the CSM orbit

around the moon's center of mass, but also because it is essential to
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know the LEM coordinates with respect to the CSM in order to give

the LEM crew instructions for their return. Furthermore, fixes on a

landmark in each of the 200 km x 200 km regions photographed by the

Lunar Orbiter will be needed to tie these regions together in some single

coordinate system, if that has not already been done; three fixes per

region are required for this task, since three points define a plane.

Scheme "A" is designed to meet this need (although Scheme "B" described

below will be more efficient for landmarks at moderate distances off the

subsatellite track, if one can afford to wait through three or four full cir-

cuits of the CSM around the moon to complete the fix).

(a) A possible procedure for Observing Scheme "A". First we

consider a possible procedure for making a single set of observations on

a single landmark fairly near the subsatellite track, using one reference

star when approaching the landmark, and another star when leaving it

astern; this can be visualized by referring to Figure XI-7. The fact

that the maximum angle between the two arms of the SXT is 57 ° , and

the fact that one arm is fixed, or movable only to a very limited de-

gree with respect to the body of the CSM_dictates a procedure similar

to that outlined below. It is assumed as before that the landmark or

the LEM (possibly with beacon or reflector) is <risible or photograph-

able through the SXT, from distances of at least 150 km possibly up

to 732 kin, (i. e. , on the visible horizon). If this should turn out to

be too extreme an assumption, it will not affect the basic arguments

or the scheme.

(I) As the CSM reaches a point, like A from which the

landmark is just visible on or near the skyline ahead,

let the fixed member of the SXT be set on a star ( a

in Figure XI-7), just above the landmark and as close

as possible to the skyline. Let the CSM be stabilized

as well as possible to keep star a in the field of

the fixed member.
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(z) Let the landmark (or LEM) be picked up in the field

of the movable member of the SXT, as soon as possible

after it is visible, when angle O_ (landmark-CSM-

star a) is small.

(3) From A to A', when angle 0_ has increased to 57 ° , make

as many observations as possible.

At A' the landmark will go out of reach of the SXT if its fixed arm

is still pointed at star a. If star a and landmark are both in the orbital

plane the central angle, CSM-moon's center-landmark, will be 2.87 ° .

With a central angle of 2.87 ° , star a will have risen to 23o-2.87 ° or

about 20 ° above the skyline, and the landmark will be about 57°-20 °,

or 37 ° below it. The landmark will be at an angle N = 90 ° - 37 ° -23 °,

or 30 ° from the nadir, as viewed from the CSM, and the ground arc

distance, d , of the landmark from the nadir of the CSM will be 87 kin.

The slant range, r, from the CSM to the landmark will be 173 kin.

(If the landmark or star a are not on the orbital plane, all these dimen-

sions will be somewhat different. ) The geometry of this situation is to

be distinguished from the geometry where the reference star is very

close to the skyline, in which case the SXT can.reach 57 ° below the sky-

line, i. e. , to a landmark at nadir angle N = 10 °, arc distance from sub-

satellite point d = Z6 km, and minimum slant range rmi n = 151 kin.

There is a "blind cone" for angles N Z_ 10 °, where landmarks simply can-

not be reached by the SXT if the other arm is pointed at a star.

(4) There is a point B on the trajectory of the CSM, symmetrical

with A', where the geometry of the landmark relative to the

flight path behind the CSM is the same as it is for the forward

part of the flight path at A'. During the approximately 2 minutes

that it takes the CSM to move from A' to B, the CSM should be

pitched about 180 °, and a star (b on the diagram) should be

picked up in the fixed member of the SXT, and the CSM stabi-

lized as before. Star b can be about 180 ° from (at the

antipode of) star a.
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(5) When the CSM reaches the point B, or as soon thereafter

as possible, where angle _ (landmark-CSM-star b) is

57 ° and decreasing, so that the movable member of the

SXT can be brought to bear on a landmark, a series of

measurements of that angle _ should begin, with the mov-

able member of the SXT following the landmark. (Repeat

of step (3) above, in reverse. )

(6) Continue until the landmark (LEM) is out of sight, or the

star b sets as viewed from the CSM, whichever happens

first (B' in Figure XI-7).

(b) Geometrical strength of fix as rationale for modifying

Observin_ Scheme "A". Figures XI-8 and 9 shows that if only the two sets

of angles are measured -- angles _i (landmark-CSM-star a) and angles

i (landmark-CSM-star b), in which stars a and b are approximately

opposite each other in the sky and both approximately in the orbital

plane of the CSM -- then the geometry of the three-dimensional fix of

the landmark with respect to the orbital positions of the CSM can re-

sult in a fix that is good in (1) the X-direction, parallel to the orbit and

in (_) the Y-direction or local vertical, but not quite as good in (3) the

Z-direction, perpendicular to the orbital plane. (If reference stars are

available in exactly the right position to make one set of observations

as indicated in Figure XI-8, and the other as in Figure XI-9, this slight

defect will be largely taken care of. (See pages 105 - 107 below. )

To rectify this difficulty, it would be possible to pick other stars,

say, in directions c and d in Figure XI-10 such that the lines of position

CSM-to-landmark will cross the lines of position obtained With stars a

and b at an angle as near 90 ° as possible, and cross each other as near

90 ° as possible. To pickup all four stars, a, b , c , and d in the

same pass of the CSM over the landmark seems rather cumbersome,

and would probably waste a good deal of the fuel supply of the attitude

jets. It would be more efficient to set on stars a and b during one pass,

and on stars c and d the next pass. To strengthen the geometry of the
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fix even further, one could pick stars, as e and f in Figure XI-10. If

this were done, then stars c and e could be paired in one pass, and

stars _d and _f in the next, in order to limit most of the spacecraft atti-

tude change to motion around a single axis. (It is assumed here that it

is easier and more economical to change the attitude of the spacecraft

about 180 ° in, say, pitch, and only a small angle in roll or yaw, than it

is to change all three attitude angles by amounts of the order of 90 °. )

But only in exceptional cases would one want to devote three entire passes

to a single landmark.

A certain amount of flexibility is possible in choice of pairs of stars:

e. g. , star a on the approach could be paired with star b, or star e,

or star f on the retreat; star b on the retreat could be paired with star a,

or star c__z, or star d on the approach.

8. Critique of Observing Scheme "A"

Let us now turn to a more detailed discussion of this observing

scheme, in order to analyze the uncertainties associated with it. To

begin with, it would be most efficient to distribute the observations in

such a way as to use two of the six stars on each of three passes over

a landmark or the LEM. In that way, there would be time to obtain

several measurements of the angle _ between the landmark and a star

as the CSM approaches the landmark and the angle a decreases, then

several more measurements of the angle B between the landmark and

another star as the CSM goes away from the landmark and the

angle B decreases.

As noted previously in the outline, the observer would first set the

fixed member of the SXT on the reference star by slewing the spacecraft

and stabilizing its attitude, then set the movable member of the SXT on

the landmark by setting the shaft and trunnion angles of the SXT. Then,

as the fixed member is kept on the star and the movable member on the

landmark, a series of repeated photographs can be made. (See Part C

below of this section for a more detailed discussion of this procedure
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and its feasibility. ) It is difficult to estimate how long such a series of

observations might take, without some simulation to check out the esti-

mate. Let us assume, however, it will take about two minutes to get set

on the star and the landmark from some random orientation of the CSM,

but only one minute if the spacecraft has been oriented in advance; so that

the fixed member points in the direction of a preselected reference star,

even before the star has risen over the horizon ahead. Let us assume

further that photographs can be obtained at intervals of no change than

one minute -- in fact, somewhat less -- the time between exposures

being used to follow the passing landmark with the movable member, i. e. ,

to reset the movable arm as necessary.

At an orbital altitude of 148 km (80 n. m. ), the slant range to the

horizon is about 73Z krn and the ground-arc distance from the nadir of

the spacecraft is 693 kin. An observation of a landmark can obviously

be made no further away than this. As noted before, landmarks cannot

be measured if closer than 10 ° to the nadir of the spacecraft, i. e., no

closer than about 26 krn ground-arc distance from the subsatellite point.

The slant range to such a point is 151 km. We are thus considering

the following ranges of values: (1) slant range, 151-732 kin; (Z) nadir

angle, 10°-67°; (3) ground-arc distance, 26-693 kin.

At an orbital velocity of 1. 6Z km/sec the speed of the subsatellite

point over the ground is 1.49 km/sec, or 90 km/min. Thus about 6 1/Z

rains, elapse between the time a landmark can first be sighted on the

horizon near the track and the time it goes out of reach into the cone

bounded by N = 30 ° . (To chase the landmark into the cone of inacces-

sibility 10 ° from the nadir would require setting on another star immedi-

ately, but it is the essence of Scheme "A" to stick to one star.) This

seems to allow time for (up to) six observations on a landmark or the LEM,

using one star while coming up on it, and time for approximately the same

number of observations while leaving the landmark astern, now using

another star. The two sets, coming up and going away, are symmetrical,

so it is not necessary to consider more than one of these sets. The six
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successive observations of the angle, landmark-CSM-star, might be

carried out typically at slant ranges of, say, 600, 520, 440, 360, Z70,

and 180 krn approximately. If the SXT trunnion angle and the auxiliary

photographic offset can be measured with an accuracy of 1:104 , as

assumed above, then the error in the direction of the normal to the respec-

tive conical surfaces of position would be + 60, + 52, + 44, + 36, + 27,

and + 18 meters, respectively.

Example h Assuming a poor geometry as in Figure Xl-8, in which

the (up to) six cones "nest" and the intersections between the cones (taken

two at a time) tend to form a sheaf or bundle of curves running through

the landmark in roughly the same direction, then the observations would

be rather redundant in locating landmarks in the (two) directions per-

pendicular to the axis of the bundle, but would do little to locate the

landmark accurately in the direction parallel to the axis of the bundle.

To restate the case explored in Paragraph 5 above: (I) if we

take _ = 15 m, corresponding to the minimum slant range of about 151

krn above, (Z) if we give such an observation a weight W = 1 (as if all

the observations were a member of a set of observations all made at the

same slant range and distributed normally with a dispersion of + 15 m),

and (3) if the individual measurements then be weighted according to the

rule, W. = ( cr / _ i )Z in which W. is the weight of the ith observa-usual
1 ' 1

tion and 6 i is its error, then the uncertainty of the mean position of the

landmark perpendicular to the axis of the bundle would be about + 15

meters x ( _ Wi )-I/2 x (mean projection factor). The mean projection

factor takes care of the "strength of the geometry. " Now, with the

individual errors assumed at the end of the last paragraph _ W. = I. 44

wi )-l/z zso ( _ = 0. 83 If the arithmetic average of the angle _ between

the individual curves (intersections of pairs of cones) and the axis of the

bundle is, say ZO ° , the projection factor is sec _[r , or about i. 03. Thus

the cross-axis uncertainty is +_ 15 x 0.83 x I. 03 m, or about + Ii m. Along

the bundle axis the projection factor is cosec _/l or about 2.9, so that the

uncertainty along the axis is about + 32 m. The weight can be increased

if it proves to be possible to crowd most of the observations into the part

of the runs nearest the landmark.
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Example 2: As a second example let us assume that the geometry of

the intersections is nearly ideal, i.e. , fulfilling one of the following three

sets of conditions:

(1) There are only three intersection curves (three cones taken

two at a time), these three have about equal weight, and the

three are more or less mutually orthogonal; or

(z)

(3)

There are more than three intersection curves, but still of

equal weight, and these are distributed more or less

randomly in direction (orientation) in space so that they

have no preferred axis; or

There are more than three, and these are of unequal

weight, but are distributed in direction (orientation) in

such a way that the average weight per unit solid angle is

more or less uniform.

Under these circumstances the uncertainty (dispersion) will be

the same in all directions. It is not to be expected that three mutually

orthogonal cone-intersections, each with unit weight, can be obtained by

Observing Scheme A; that is, Case (1) will not occur. In fact, since the

observations in the set-of-six are of unequal weight, only Case (3) can

be expected ever to occur. In the configuration represented in Figure XI-9,

it will tend to occur almost naturally. The first two or three observa-

tions at long range, and hence with low weight, will tend to fall together

with each other (i. e. , with the relatively small angle between their direc-

tions) more closely than they will with the last two or three, and the last

two or three will not fall together as closely with each other as the first

two or three do with each other. Thus the intersection curves will tend

to be distributed so that the weight per unit solid angle approaches uni-

formity. It would be difficult, however, to attain uniformity of distri-

bution with only one set-of-six; the distribution would be filled out even

better with two sets-of-six, one coming up on the landmark, as in Figure

XI-8, and the other going away, as in Figure XI-9, or vice versa.
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This point may require a little elaboration. Examination of the lie

of the cones of position in Figures XI-8 and 9, or for that matter, any

possible combination of cones that can be obtained in a single pass over a

landmark, shows that to obtain any intersection curves that run horizontal-

ly and perpendicular to the subsatellite track (i. e. , in the Z-direction)

it is necessary to use at least some cones whose under side, where it

intersects the ground, has a rather gentle slope; in other words, the

landmark must be observed at quite long range. But these observations

have low weight: to build up the weight in this particular direction to

achieve a more nearly isotropic error distribution, it would be neces-

sary to repeat a number of these long-range observations. That is

exactly what the series of observations in the configuration in Figure

XI-8 does, thus supplementing what is lacking in the configuration in

Figure Xl-9.

With luck, the distribution of "Lhe resulting uncertainties may be

nearly isotr6pic, with a one-dimensional dispersion ¢Y = 15 m (dis-

persion of the components of the error vectors in the error ellipsoid

in a single direction) or a three-dimensional dispersion a = 2Z m

(dispersion of the arithmetic length of the errors in the error ellip-

soid, without regard for direction). Even in the "poor geometry"

example above, the uncertainty of the fix was estimated to be + 11 m

in two directions and +_ 3Z m in the third direction. Therefore, except

in extreme cases where the utmost possible precision is required, it

is doubtful whether there is much point in struggling very hard to

achieve either perfect isotropy of the error ellipsoid, or errors small

compared to that of the CSM position, assumed to be + 100 m. The

decision as to where the diminishing returns dictate a stop to further

efforts need not be made now; it should be deferred until more

reliable information is available.

It is to be understood that the numbers cited above are only rough

estimates, and that the actual uncertainties would be based, as always,

on the deviations of the weighted residuals from a mean, with the vector

residuals resolved into components to obtain the dispersion in any par-

ticular direction.
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The entire foregoing procedure, a set-of-six observations running

up on a landmark and another set-of-six going away, takes (as has al-

ready been noted) about 15 minutes. The period of a 148-krn-high orbit

is 7300-odd seconds, or slightly over Z hours, and only half of this is

over the sunlit hemisphere. Therefore, only about 4 landmarks per orbit

could be fixed in CSM-referenced coordinates by Observing Scheme "A".

This might be stretched to five or six landmarks, if observations of dis-

tant sunlit features can either be started while the CSM is still over

the dark hemisphere approaching the terminator, or be prolonged after

it crosses the terminator into the dark hemisphere. It should also be

noted that the tips of some peaks stick up into the sunlight, even some

distance from the terminator in the dark hemisphere. There is also

the remote possibility of observing by earthshine, although this does

not seem at all promising for photography.

9. The Concept of Efficiency: Ai-plication to Observing Scheme "A"

Let us now consider two questions:

(1) What is the efficiency of Observing Scheme "A"? To answer

this question in any significant way, we must define "efficiency. " Let

it be measured by the numerical parameter, "weight of the observations

carried out per unit time. " The overall weighting in this context should

naturally include the effect of the geometric projection factors. For

instance, Observing Scheme "A" gives the following "efficiencies"

in the two earlier examples:

For the case with good geometry: the weight is Z x 1.44 or 2.88 in

13 minutes, or 0.22/rain. well distributed among three degrees of free-

dom. The weight can probably be increased to more than 3 easily, giving

0 Z5/ i_-_ . m n.

For poor geometry: weight about 2.6 distributed in two degrees of

freedom and about 0.06 in the third, for a total of 2.7 in 13 minutes, or

0.21/rain., mostly in two of the three degrees of freedom.
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This result seems to suggest that, if one could limit oneself to

observing only near minimum slant range (r = 151 km), and if one could

arrange the observations so that the geometry is nearly optimum, three

single short-range observations, with a total weight of nearly 3.0,

would constitute an observing scheme that would be competitive with

Observing Scheme "A", provided it took no longer than 12 minutes to

make the three observations. (But see Observing Scheme "B" below. )

(3) Unit weight for a single observation can be achieved, according

to the definitions just adopted, for only those landmarks that approach

the nadir of the CSM as close as 10 ° or the subsatellite point as close

as ?6 krn. If observations were literally limited to those of this opti-

mum type, a belt only 54 km wide straddling the subsatellite track as

its center line would be covered. This restriction makes impossible

another kind of coverage that is obviously desirable, namely, the tying

in of remote scattered points, (as far off the track as possible) to a

common coordinate system (that of the CSM orbit). Nor can the sur-

face geodetic operation provide geodetic ties or controls over more

than a very limited region: at best it can be described as providing

horizontal and vertical controls and scale with a precision of about

1:104 over a region bounded by the horizon as seen from the LEM (or

nearby high ground), which might be only 5 krn in radius. High land

around the landing site would of course push back this horizon; the

highest peaks may be visible as far as 150 krn away, but these will

be rare extremes. The point is that the surface operation will not

provide control over a very appreciable area compared to the region

to be covered by the lunar orbiter mapping mission or, for that

matter, present-day maps. Map controls for the invisible hemi-

sphere are entirely lacking, and will probably still be sketchy at

the time of first Apollo missions. It seems that the only real op-

portunity to provide improved controls for the largest possible

areas is to try to make SXT sightings of landmarks some distance

from the subsatellite track. (See Observing Scheme "C" below. )
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Apart from considerations of the desirability of extending geodetic

control for maps and lunar orbiter photographs, it is also desirable to

fix the location of a number of landmarks for navigation purposes, e.g.,

for later Apollo missions, especially on the invisible hemisphere of

the Moon.

We now examine other possible observing schemes in the light of

the foregoing considerations, namely (1) efficiency, as defined above,

and (2) coverage.

I0. Observing Scheme "B": A Small Number of Fairly High-

Weight Observations per Landmark

In Observing Scheme "B" described below, provision is made for

observing a rela.tively large number of landmarks, each with the least

possible number of high-weight observations, i. e. , made at the closest

possible slant ranges compatible with distance of the landmark from the

subsatellite track and the possible geometry of the intersections. The

intention is to maximize the number of landmark fixes per unit time.

The minimum slant range, 151 kin, and the corresponding minimum

nadir angle, 10°, of course set a lower limit. The scheme should

work down to this limit, and also out to landmarks that pass no closer

than say, 150-Z50 krn. Also, even landmarks close to the sub satellite

track must sometimes be observed at medium" slant ranges in order to

achieve acceptable intersection geometry.

It will turn out that:

(1) For landmarks close to the track, but not closer than

26 km, three sightings, disposed much like those described

in Section 1.4 above, will give sufficient information.
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(2) For landmarks closer than 26 km from the subsatellite

track, the minimum number of sightings may sometimes

be four.

(3) As the distance of the landmarks from the track increases,

the minimum number will grow larger, merging with the

situation for very distant landmarks covered by Observing

Scheme "C" below.

The scheme for items (1) and (3) above will be the basic Observing

Scheme "B", and that for item (2) will be "B", Modification 1.

(a) Rationale. A scheme designed to obtain three-dimensional fixes

for the largest possible number of landmarks all fairly close to the sub-

satellite trach, should take into account the following factors:

(1) Other things being equal, each sighting should be made at

the closest slant range feasible, to maximize its weight.

(z) No more than the necessary number of independent sightings

should be obtained; this will normally be three, but some

poorer geometries will need filling with a fourth observa-

tion, or perhaps more.

(3) Intersections between conical surfaces of positions, or

rather the normals to infinitesimal plane elements in

the neighborhood of the intersection, should if possible be

made to lie in the range 60-90 ° (or 60 ° to 120 °, if one also

counts the obtuse angle of the intersection), which will keep

the geometric degradation factor below 1. 16 (16% increase

in uncertainty).
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(4) The same reference stars should be used for as many

successive sighting observations of (different) landmarks

as possible, to avoid having to reset the attitude of the

spacecraft and restabilizing it any more than is necessary.

(s) The observing program of landmarks should be arranged

so that the longest possible sequences of landmarks come

up on the spacecraft on approximately the same relative

bearing at the times when sightings are to be made, again

with the purpose of avoiding unnecessary slewing of the

spacecraft.

(6) The general arrangement of the three sightings on any one

landmark will approximate the arrangement in Paragraph

4 foz the lines of sight OL 1, OL 2, and OL 3 for the land-

mark, OSl, OS 2, and OS 3 for the respective reference

stars. (See Figure XI-4.) This provides a ready-

made recipe for setting up the basic observing scheme.

Consider now two zones of lunar terrain, each bounded by two

small circles, both parallel to the great circle which best fits the sub-

satellite track, and both on the same side, (i. e., both to starboard, which

is north for a westbound orbit; or both to port, which is south); the nearer

circle is 26 km from the subsatellite track and the farther circle is perhaps

P.00 km away. Let us call these two zones the starboard and port "observ-

ing zones." For landmarks inside these zones, it will be easy to follow

the ready-made recipe with no alterations.

Each landmark in the starboard observing zone should be sighted in

the three directions as indicated in Figure XI-4. (i) OL I, which is in

the starboard forward lower octant; (Z) OL 2 which is on the starboard

beam, as close to the nadir as the particular landmark is able to get;

and (3) OL 3 which is in the starboard aft lower octant. (For landmarks
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in the port observing zone, substitute "port" for "starboard" in the

foregoing description. )

For a starboard (port) sighting OL1, the reference stars will be

found in the region of the sky near the drift-path great circle for that

landmark, (see Section 1.4 for definition), i.e. , either below and to

the right (left) of the velocity vector tip X, or around the velocity

vector tip X, or above and to the left (right) of X (assuming that the

observer is standing vertical and facing forward). The direction OS 1

to the reference star S 1 selected for this sighting must of course be

within 57 ° of OL 1 at the moment of recording the sighting.

For a starboard (port) sighting OL2, the reference stars will

be found in the region of the sky near '-he starboard (port) beam and

low enough in the sky to allow the angle S2OL 2 to be less than 57 °.

For a starboard (port) sighting OL3, the reference stars will

be found in the region of the sky near the drift-path great circle for

that landmark, i.e., either below and to the left (right) of the point

X' (directly astern in the direction of motion) or near the point X',

or above and to the right (left) of X' (assuming now that the observer

is standing vertical and facing aft). Again, the angle S3OL 3 cannot
exceed 57 ° .

The bearings and nadir angles for the three sightings can be

estimated more precisely, if necessary. The precise values of the

directions corresponding to sightings in which the three surfaces of

position intersect absolutely orthogonally can easily be calculated by

spherical trigonometrical relationships, in which Nmin, the minimum

nadir angle possible for a given landmark corresponding to the instant

of closest approach, would be a parameter. Alternatively, the ground-

arc distance of the landmark from the subsatellite track could be used

as a parameter. These calculations seem unnecessary here, in view of

the following two considerations: (1) drift curves, showing altitude and
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relative bearing as a function of the time, with one of the two above-

mentioned parameters, have already been calculated by Mercer

(MSC, Houston) in connection with Contract No. NA$ 9-3006 (Pilotage);

(Z) the disadvantage of slight departure from orthogonality should be

traded off for the advantage of closer slant range.

This second remark needs a little elaboration. In Paragraph 4,

it was stipulated that the angle L1OL 3 should be 90 °. It has also been

stated that departures of 25 ° or 30 ° from orthogonality lead respec-

tively to only a 10% or 16% increase in the uncertainty. On the other

hand, if the angle L1OL 3 were made as small as 65 ° , that would allow

the angles L1OL 2 andL3OL 2 to be as small as 33 °, and therefore

also considerably closer to the nadir; thus the slant range to L 1 and

L 3 would be decreased and the uncertainties due to the SXT angle-

measurement error decreased in proportion. For Nmi n small, i.e.,

for very close landmarks, the tradeoff is in favor of bringing OL 1

and OL 3 in closer to OL 2 by a considerable amount, because of the

gain in precision obtained from the shorter slant ranges involved.

The following approximate calculation will bring this out. If L1OL Z

and L3OL Z are both 45 ° and Nmi n = 10 °, then the nadir angles N(L1) and

N(L 3) are both about 45 ° (actually, arc cos (cos N cos 10°), or 45.87o).

The slant range r is approximately h secN, and the rate of change

of r with N, dr/diN, is approximately h secN tanN, in which h is

the height of the CSM above the ground. The relative rate of change

of r, dr/rdN, is simply tanN, which is equal to 1. That is, r de-

creases 100% per radian decrease in N, or 1.74°7o per degree. On the

other hand, the rate of change of geometric degradation factor

csc {) is d(csc {) )/diN, or -csc 8 cot 8 d8 /dN, or -Z-csc{)cot 8

(since _ = 2N). The relative rate of change of the degradation factor,

d(csc _))/csc {) • dN, is simply .2 cot @ , which is equal to zero. The

cross-over point, at which the rate of relative increase in the geometric

degradation factor is matched by the rate of relative decrease in the

slant range is given by the equation tanN = Z cot(ZN), the solution to

which is N = 30 ° .

178

I
I

I
i

I
I

I
I
I

I

I
I

I
I
I
!

[

I

I



I

I

I

I

I

I

I

I

I

I

I

I

The implication is that OL 1 and OL 3 should be brought in 45 °

minus 30 °, or 15 °, toward OL Z (a more exact calculation would lead

to a slightly different amount). The following should also be noted:

(1) for larger values of Nmin, i.e., for landmarks farther from the

subsatellite track, the tradeoff begins to fall off, and eventually be-

comes negligible. (Z) It has been assumed above that the reference

stars S 1 and S 3 are near the drift-path great circle, but if it becomes

necessary to find stars closer to the vertical circles through L 1 and

b3, in order to be within 57 ° of those directions, some degradation

will have already been introduced; therefore caution should be

exercised in introducing further degradation. In other words, look-

ing again at Figure 4, if one relaxes on the geometry too much, one

could wind up with the two poles P1 and P3 rather too close to PZ"

The following table summarizes the altitude angles A, and rela-

tive bearings B of landmark sightings L. and star sightings S.. These
1 1

values should be considered representative only, subject to modi-

fication according to the foregoing discussion. (Angles are given for

a landmark, abbreviated LM in the table, that passes on the starboard

side of the CSM. For landmarks passing on the port side, change all

B's to 360-B.)

I

I

I

I

I

I

S ight ing

Number A(L i ) BCL i) A(S i ) BCs i)

i=l

i=2

i=5

-45 ° or some'
what lower

i0-15 ° for LM

passing close

to nadir; some-
what more for

distant LM, or

if A(L) is much
below -45°

+I0 to -25 °, or what-

ever is necessary to

be within 57° of the
LM and still remain

near the great circle

extension of the appar-!
ent drift curve of the

LM

Determined by
the conditions

specified for

A(S); _ general
near 0 .

As low as pos-

sible, i.e. as
near -80° as

possible

-45° or some-
what lower

90°

165-170 ° for LM

passing close to

nadir (conditions

as in B(L2) above

As low as necessary to
be within 57° of the

LM

Same as A(S2) above

90° (i.e., on the
same vertical

circle as the LM)

Like B(S2),in
general near 180 C
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b. General plan of Observin G Scheme "B"

(1) Select landmarks in the observing zones, paralleling track

on the starboard and port sides. (A suitable total number of land-

marks will emerge later. )

(2) Arrange separate lists of landmarks, those in each list being

about the same distance from the subsatellite track, and on the same

side. The order of landmarks in each list should be from east to west,

which is the order in which the CSM will pass the landmarks. The

grouping by distance will ensure that all the landmarks on one list

will come in succession to approximately the same directions OLl,

OL2, OL3, relative to the CSM.

(3) Arrange three lists of reference stars 4th magnitude or

brighter. The first list comprises stars in a cap within 23 ° of the

north pole of the CSM orbit (which will be close to the north celestial

pole of the Moon, since the CSM orbit will have a very low inclination

to the lunar equator); these stars are for sightings of the type S2OL Z

on the starboard side. The second list comprises stars within 23 °

of the south pole of the orbit, which are for S2OL 2 - type sightings

on the port side. The third list comprises stars within about i0 ° of

the orbital plane. Some of these will always be near the drift-path

great circles of the landmarks. These will be used for sightings of

the type SiOL l ahead, and S3OZ 3 behind the spacecraft. The stars on

each list should also be arranged from east to west, i.e., in order of

decreasing selenocentric right ascension. The reason for these three

lists will become apparent later.

c. Basis Scheme "B"

(1) During a single orbital revolution around the Moon, the CSM

observer should make sightings of landmarks from only one of the lists
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of landmarks, i.e. , all those about equally distant from the subsatellite

track and all on the same side. These sightings should be of the same

type, i.e. OL 1, OL2, or OL3, to obviate excessive changes in CSM

attitude.

(Z) Let the first set be of the type OL 3. That is, during one

revolution, all landmarks should be sighted near the instant of closest

approach. The reference stars for these sightings would be chosen

from the appropriate "polar cap" list.

(3) During the next circuit of the Moon, these same landmarks

should be picked up in sightings of type OL 1 ZO ° to 40 ° below the visible

horizon and bearing 10 ° to perhaps 30 ° to one side of the flight path

ahead. The reference stars for these sightings will lie near the orbital

plane and will successively rise ahead of the spacecraft.

(4) During a third circuit, the same landmarks should be picked

up in sightings of the type OL 3 using the same reference stars as in

the set OL1, except now the stars will be setting behind the spacecraft.

1 I. Critique of Observing Scheme "B"

{a) Use of a reference star for more than one landmark. It will be

recalled that it is desirable to use one reference star for as many suc-

cessive landmark sightings as possible, in order to avoid unnecessary

changes in spacecraft attitude. Figure XI-11 illustrates the "rising" and

"setting circles" of stars at different angular distances from the orbital

plane, which is essentially equivalent to lunar declination. {The angles

are identical if the orbital plane is coincident with the equatorial plane

of the Moon. ) The "rising" and "setting" of course refer to the apparent

motion of the stars from the standpoint of an observer on the CSM who

regards himself as stationary. These circles are quite similar to the
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diurnal circles of stars as viewed from the Earth's equator. They can

be combined with the apparent rate of rotation of the sky, which is the

same as the angular orbital motion of the CSM (with opposite sign), so

as to give estimates of the length of time that a particular star will re-

main in approximately the right direction to serve as a reference star

for a set of sightings of the same type. For practical purposes, we

may take the "diurnal motion" of the stars to be 3°/rain eastward.

Polar Cap Stars. Let us first consider reference stars of type S Z,

in one of the "polar caps." Stars within 23 ° of the poles of the orbit

(Z or Z' in Figures XI-4 and XI-11) never set. If this were the only

factor that need be considered, the fixed arm of the SXT could be kept

pointing at such a star indefinitely. For landmarks in the "closest"

list corresponding to the narrow strip with Nmi n not much greater

than 10 °, the reference star S 2 must be near B = 90 ° (or

270 °) and N'= 67 °, just above the skyline (visible horizon). As the

CSM makes a quarter-revolution around the Moon, that star will

move to B = 67 ° (or 2930), and N = 900; then the star will no longer

be within 57 ° of the innermost strip of landmarks. For landmarks

farther out, say with Nmi n = 33 ° , reference star S 2 can be as much

as 23 ° above the skyline, or very close to a pole of the orbit. Such

a star will remain practically stationary in B and N coordinates,

and can be used indefinitely from any position in the orbit. For land-

marks even farther out, with Nmi n > 33 °, the reference star S Z

can be even higher than Z3 ° above the skyline, i.e. clear above the

horizontal plane; but it will nevertheless be convenient to choose

it as near a pole as possible, to take advantage of a nearly stationary

B and N. For landmarks with Nrni n between I0 ° and 23 °, it will be

necessary to change reference stars S 2 occasionally: fairly frequently

near the lower limit, but never near the upper limit. For instance,

for the intermediate value Nmi n = 15 ° , star S2 must be no more than

5° above the skyline (N(S2) < 720 ) or else it will be further than 57 °

from L 2. If the star be chosen so that it describes a circle 23 ° in
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radius around Z (or Z') i. e. , a circle that just misses the skyline at its

low point, the star will remain within 5 ° of the skyline for about 77 ° of

its small-circle arc, which requires about 25 minutes to traverse.

During this same 77 ° arc, B(S 2) will remain within 15 ° of the beam,

i.e. between 75 ° and 105 ° on the starboard side, or between 255 °

and 285 ° on the port, ranges which conform well enough with the

or thogonality constraints.

In sum, it appears that except for landmarks with Nmi n be-

tween 10 ° and 15 ° , it will not be necessary to change the reference

star S2 very often.

(c) Stars near the orbital plane. Reference stars for sightings

OS 1 and OS 3 will lie fairly close to the _rbital plane, and will rise or

set nearly along-vertical circles. For Nmi n = 10 °, the reference

stars S 1 or S 3 should lie within 4 ° of the orbital plane if they are

on the same side as the landmark, and within 2 ° if on the opposite

side, if strict orthogonality is to be observed. For Nmi n = 45 °,

the range increases to 23 ° on the same side and 12 ° on the opposite

side. Translated into bearings when the stars cross the horizontal

plane, these limits become: (1) For the starboard side, N = 10 °,

B(S1) = 358°-4 °, B(S3) = 176°-182°; N = 45 °, B(S 1) = 348o-23 ° ,

B(S3) = 157°-192°; (2) for the port side, N = 10 °, B(S 1) = 356°-2 °,

B(S3) = 178°-184°; N = 45 ° , B(S 1) = 337°-12 °, B(S 3) = 168°-203 °.

The stars must also be below N _ 102 ° or so, to be accessible.

If OL 1 and OL 3 are brought closer to OL 2, as suggested above

for small values of the parameter Nmi n, the stars for S 1 and S 3

may have to be moved farther from the orbital plane than the 4 °

just given -- say, up to 10 or 15 ° on the same side. The stars

must now be below N _ 87 ° to be accessible, i. e., within 20 ° of

the skyline.
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The rate at which a star rises or sets (altitude or nadir angle

increases or decreases) is 3°/rain, times the cosine of its bearing

when it crosses the horizontal plane (N = 90o). Since the minimum

numerical value of the cosine for the cases considered in the last

paragraph is 0.92., the rate of rising or setting is still 2.7 to

2.8°/rain. The reference stars would thus rise from the skyline

ahead (atN = 67 ° ) to N = 108 °, a verticalangle of 41 ° , in 14 or

15 minutes, and conversely set through the useful range in the

same length of time. When the maximum useful nadir angle is

loweredto 87 °, as it wouldbe if OL 1 and OL 3 are moved to 30 °

from OL2, the rising or setting time through the useful zone is

shortened to 6 or 7 minutes. (See Table XI-1 for a more general treat-

ment of these questions. )

(d) Time consumed and efficiency. We assumed earlier that

it will take two minutes to pick up and set the SXT on a star and a

landmark, and that photographic records of sightings can be re-

peated on the same landmark and star at intervals of no greater

than one minute. Let us assume that it will take a full minute

to reset from one landmark to the next, as long as they follow

each other into position on the same line of sight -- same direc-

tion -- with respect to the CSM, but two minutes if the switch

from one landmark to the next requires a large change in the

direction of pointing the movable arm of the SXT. (None of the

assumptions about the time required to make settings, either

in this paragraph or earlier, are necessarily very realistic; but

it is difficult to obtain a better basis for making estimates until

at least some simulation studies can be carried out. )

These assumptions, together with the considerations explored

in the previous subsection above, lead to the following estimates:

(i)

with OL 1

Innermost strip of landmarks with Nmi n close to 10 °, and

and OL 3 brought up to 30 ° from OL z. In these directions,
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TABLE Xl- 1

Time in Minutes Taken by a Star

0° +A o

To Rise from Altitude _A o to Altitude 0o

+A ° 0 °

To Set from Altitude 0o to Altitude _A o

As a Function of A and the Relative Bearing +__B or 180 ° _+B of the

Star When It Crosses the Horizontal Plane

Due to an Orbital Motion of the Spacecraft of 3°/rain.

SinA B: po i0 o ZO ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 °

I

I
I
I

I
I
I

I
I

5.8 °

11.5 °

17.5 °

Z3.5 °
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N(L I) = N(L3) = 31.5 °, and r(Ll) = r(L3) = 176 kin, so that theun-

certainties in the surfaces of position are 17.7 m. The total weight

is: 1.00 for the sighting S2OL 2, and2 x (15/17.6) 2 x 0.8662 for

geometric degradation, or 0.55 for the other two, or Z. 1 altogether.

If OL l and OL 3 had been left in their normal positions 45 ° away from

OL 2, Nwouldhave been 45.9 ° , r would have been 223 km, and • 22.3

meters. The total weight would have been 1.00 + 2 x (15/ZZ. 3) 2. , or

I. 90, somewhat less than the first case.

In the first case (LIOL 3 = 60o), the reference stars S 1 and

S 3 would have to be changed every 6-7 minutes, and would require

2 minutes to pick up, thus allowing, say 4 sightings per 7 minutes.

In the second case (LIOL 3 = 90o), the reference stars S I and S 3

would have to be changed every 14-15 minutes and would require

2. minutes to pick up, thus allowing, say 12 sightings per 15

minutes. In both cases, the reference star S 2 would have to be

changed certainly every 15 minutes or so, thus a11owing, say, 1Z

sightings per 15 minutes also. These amount to about 48 sightings

on 48 different landmarks per revolution (remembering that only

60 minutes are spent over the sunlit side). Since three revolutions

will be required to complete the job of three sightings on each landmark,

we arrive at the figure, 48 landmark fixes in 180 daylight minutes,

with each fix having a weight of I. 9 to 2. I. The efficiency, in the

sense defined before, is therefore 0.38 to 0.42/minute, a good deal

higher than for Observing Scheme "A".

(Z) More remote strip of landmarks, Nmi n = 45 ° . Without going

into so much detail as for the last case, it is possible to say that the

general effect of moving out to a strip of landmarks farther from the

subsatellite path is: (i) to increase the length of time that the SXT

fixed arm can remain pointing at a reference star without having to

shift to another, at least for sightings of the type $2OL2; (ii) to de-

crease the weight of the observations because of the increased slant

range. Item (i) may look like an advantage, but it is not a very
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great one, because sightings of the type SIOL 1 and S30L 3 cannot be

speeded up much and so constitute a bottleneck. The rising or setting

rate of Z. 7°/minute is still fast enough to move a reference star out

of the useful zone in 15 minutes or so. This time can be lengthened

only by using stars farther from the orbital plane, with some degrada-

tion in the geometry. As for Item (ii), the slant ranges will now be

about ZI9 km for r Z and 349 km for r I and r3, so that the total weight

will be 0. 85. The efficiency will be about 0. Z3/minute, comparable

with that of Observing Scheme "A". There still remains the advantage

that many more landmarks can be covered than in "A", although each

fix will of course have a lower weight.

(e) Observin_ Scheme "B", Modification 1. For landmarks in

= 10 °, i.e., closer than 26 km to
a strip of terrain closer than Nmi n

the subsatellite track, a sighting of the type SzOL Z, with S Z and L Z

on or near the vertical circle perpendicular to the orbital plane, is

no longer possible. The direction OL Z, at which L is closest but

still observable, breaks up into a pair of directions OLz1, where the

drift path of L enters, and OL22, where it leaves the blind cone.

These two directions will be symmetrical with respect to the OYZ-

plane. Similarly the pole P2 of infinitesimal plane element of

position (or "slab of position 'L of paragraph 5) will divide into two sym-

metrically placed points, one, PZI' between the original Pp. and X, and

the other, PZ2' between PZ and X'. (Refer to Figure XI-4. ) We now

see a situation where four sightings begin to become necessary.

As long as Nmi n is not much less than 10°' PZ1 and PZZ will

remain fairly close to Pp, and the number of sightings can

be limited to three without loss of geometrical fix strength. If the

forward pole P21 and sighting S21OLz1 be chosen, and the forward

tilt of OPz1 is great enough to begin to degrade the geometry of

the intersection with the surface of position of SIOL l, this can be

counteracted by moving OL 1 away from OLz1, bearing in mind the

_:-'But note Observing Scheme "B", Modification Z, for remote landmarks
discussed in Section 1Z below.
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same kind of trade-offs between intersection geometry and slant range that

have already been discussed in detail. (Alternatively, if the aft sighting

$23OL23 be chosen, the direction OL 3 can be moved away from OL23. )

Eventually, as Nmi n gets very small, P21 and P23 will have moved

rather close to PI and P3 respectively, even if these have been "backed

off", as suggested in the last paragraph, so that they will take the place

of Pl and P3 in the geometry. Before this stage is reached, the best

geometry is conserved if all four poles and corresponding sightings

are used. When this stage is finally reached, however, it is neces-

sary to find replacements for the poles PI and P3 which will indicate

the proper direction for sightings. The poles for the new sighting

direction will be in the general vicinity of the region vacated by P2" To

obtain symmetry with a forward sighting, like $21OL21, it will be neces-

sary to locate a pair of new poles, one to starboard and the other to port,

each at a nadir angle of about 135 ° (altitude 45o), and somewhat ahead

of the OYZ-plane. Sightings based on these poles should be made on

the landmark, when it is in the middle foreground, at a moderate slant

range. We have now arrived at a geometry that resembles the for-

ward half of the layout for Observing Scheme "A" with reference

stars low in the sky, one more or less straight ahead, and the other

two at relative bearings in the neighborhood of 60 ° and 300 ° respec-

tively. The whole foregoing scheme could be reversed, i. e. , be

set up for the aft hemisphere.

Pressed to its logical conclusion, Observing Scheme "B", Mod. I,

would be rather clumsy. The pole P21 or PZ3 corresponds to the sighting

at smallest slant range, on the edge of the blind cone. This means that

the reference star SZI or $23 is barely above the skyline, and rising or

setting vertically. Stars in this position would be usable for probably

no more than a single minimum slant-range sighting on a single land-

mark in a single pass, thus requiring the acquisition of a new reference

star after each sighting. If the minimum slant range at which one at-

tempts to observe is relaxed, in order to avoid frequent reacquisition of

reference stars -- e. g., if it relaxed so that N = 23 ° -- then the situa-

tion is even more nearly like the forward (or aft) hemipshere of Observing

Scheme "A", and the weights of the observations are similar.
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12. Distant Landmarks; Observing Scheme "C"

Observing Scheme "B" can be extended to landmarks at somewhat

greater distances from the subsatellite track than the 151 km, or mini-

mum slant range r rain Z19 l<m, corresponding to a minimum nadir

angle Nmi n = 45° . The errors in this region become larger, reaching
a maximum at the visible horizon or skyline, and the weight correspond-

ingly decreases; therefore, a large number of sightings per landmark

is required to attain the same accuracy. Furthermore, as one tries to
obtain fixes on landmarks from Z00 km on toward the visible horizon,

it becomes increasingly difficult to obtain a conical surface of position

that dips steeply away from the observer in the CSM; i. e. , one forming

a small dihedral angle with the orbital plane, or one whose normal is

in or near the vertical plane containing the CSM and the landmark, and

directed away from the observer at a low angular altitude. The CSM

does not get intQ a position, the geometry of which relative to the land-

mark allows such a sighting to be made. This implies that the error

ellipsoid around the most distant landmarks will unavoidably be elongated

in the direction perpendicular to the orbital plane of the CSM, or more

exactly, along the mean line of sight to the landmark (line of sight at

closest approach). In other intermediate cases, the ellipsoid can be

oblate, with horizontal uncertainty in each degree of freedom about

equal and both larger than the vertical uncertainty.

In the extreme case -- that of a landmark whose minimum slant range

is nearly equal the range to the visible horizon (about 732 km), so that

it appears briefly over the horizon on the beam of the CSM -- only two

kinds of sightings (or their equivalents) are essentially possible: (i) with

the reference star in the same vertical plane as the landmark, so that

the conical surface of position is horizontal at the landmark, and (ii) with

the reference star just above the visible horizon, but some distance right

or left of the landmark in bearing, so that the conical surface of position

is vertical at the landmark and also approximately orthogonal to the
-4

orbital plane. Assuming as before a linear error of r 10 , where r

is the slant range, we would obtain a cigar-shaped error ellipsoid with
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axes 73n -1/z (where n is the number of independent sightings) trans-

verse to the line of sight, but very long in the direction of the line of

sight. (Since the position along the line of sight is completely indeter-

minate if one is dependent on the sightings alone, the uncertainty along

the line of sight is in principle infinite, but it is actually limited by

the preexisting error of location of the landmark, whatever that may

be. In any case it cannot be larger than 73Z km, the slant range to

the landmark. )

Let us examine a somewhat less extreme case, namely, a land-

mark at such a distance that it rises at relative bearing 45 ° (or 315 °)

and sets at relative bearing 135 ° (or 225°), thus passing through 90 °

of relative bearing while above the horizon. At this distance from the

CSM, it is stillpossible to obtain three mutually nearly orthogonal

intersecting surfaces of position: (i) the vertical plane on relative

bearing 45 ° (or 315°), (ii) the vertical plane on relative bearing 135 °

(or 22.5o), and (iii) a nearly horizontal plane. The first of these can

be obtained just after the landmark rises, using a reference star just

above the horizon but left or right of the landmark in bearing; the

second can be obtained just before the landmark sets (with similar

conditions for the reference star); and the third can be obtained any

time, with a reference star vertically above the landmark.

Solving the spherical triangles for a landmark that passes through

a range of 90 ° in relative bearing between rising and setting, one ob-

tains the following results: the CSM traverses 33.4 ° of its orbit, taking

about 11 minutes. The minimum slant range is 526 km, and the mini-

mum ground arc distance is 486 kin. The error ellipsoid will be 49n -1/2"

meters in the vertical direction, and about 70n -1/2 meters in each of the

horizontal directions, under the same assumptions as before. The

minimum nadir angle (corresponding to the point of closest approach)

is 65. 8 °, so that the maximum angular distance below the visible hori-

zon or skyline is less than 2 ° . This result implies that the part of

the moon's surface visible from the CSM will still be workable for

fixing landmarks out to a distance that would look very close to the
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skyline. Although it might be possible to push the limit of workability

a few kilometers past the slant range of 526 km just quoted -- say,

600 -- it seems likely that, within a degree or so of the skyline, with

line of sight that is so close to grazing incidence where it intersects

the ground, terrain features will become so badly superimposed that

only conspicuously high landmarks which project above the general

terrain irregularities can be sighted on.

(a) Procedures for Observin_ Scheme "C". For the nearer end

of the slant ranges contemplated (220 km to the horizon}, the procedures

would be identical to those for the farther end of the range for "B" (up

to 220 km slant range}, and need not be described in detail. That is,

there is no sharp line of demarcation where Scheme "B" ceases to

be effective, and at first the only extension of "B" would be a provi-

sion for obtaining more observations per landmark to keep the un-

certainties smaller than some arbitary standard of acceptability.

For landmarks at greater distances, the region of the sky in which

one would look for suitable reference stars would shrink to that part

of the sky in two sectors of relative bearing centered on the relative

bearings 90 ° (to starboard) and 270 ° (to port), and generally low in

the sky (although they can be as high as 55 ° above the skyline for some

of the sightings described above). Since stars in these regions of the

sky are not too far from the two poles of the orbital plane, they will

be displaced relatively slowly by the orbital motion of the CSM, and

it will be necessary to pick up fresh reference stars only infrequently.

The main feature of Scheme "C" will be based on the desirability

of making repeated observations of the same landmark. We might con-

sider the numerical example above as being representative of condi-

tions (i. e._ coverage) beyond which it will be undesirable to go, except

perhaps in the case of a very small number of important landmarks

that happen to be at extreme distances from the subsatellite track. In

the numerical example, the error of a single observation, 49 to 70 m,

3 or 4 times the adopted unit weight error of 15 m, so that it would

be necessary to observe each landmark I0 to 20 times for each degree
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of freedom, or 30 to 90 times altogether, in order to achieve a fix of

weight equivalent to that of a close landmark with three optimum ob-

se rration s.

It is perhaps worth noting two possible observing procedures:

(i) An extension of Scheme "B", already mentioned, which

we might call "B", Modification 2, for landmarks in the range of

minimum slant ranges 220 km to perhaps 350 km; this would be

identical to Scheme "B", except that to keep the uncertainty low,

perhaps twice as many observations or more would be obtained --

say, six to fifteen altogether.

The efficiency of this procedure can be estimated by taking

a typical numerical example (see Section I I above, under sub-

head Time Consumed and Efficiency). Let us take a landmark

whose minimum slant range is 300 kin: on the starboard side

it would rise at relative bearing Z0 ° and set at 160 ° (70 ° ahead

and behind the beam, respectively); on the port side these re-

lative bearings would be 340 ° and Z00 ° respectively. It would

be visible for 14 or 15 minutes; its minimum nadir angle N
min

is 50.3 °, about 17 ° below the visible horizon. For an un-

modified extension of Scheme "B", with r I = r 3 = 500 km, and

r 2 = 300 kin, the weight of a set of three observations would be

about 0.38, which would lead to an efficiency, in the sense

previously defined, of not much more than 0. 1 per minute. The

efficiency would be improved somewhat by making a set of

several repeated observations of the same landmark and same

reference star, of course at the expense of observing fewer

landmarks altogether.

This result implies that for landmarks somewhere be-

tween 220 km and 300 km minimum slant range, it would pay

to switch over to Scheme "C", described next below.
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(ii) Scheme "C". This scheme would be brought into

play for landmarks at slant ranges far enough away that the

efficiency of Scheme "B", Modification Z, falls below that

possible with "C". As we have just noted, this cross-over

point will occur at a minimum slant range generally some-

where between Z20 km and 300 kin. The cross-over point

will be influenced by the accuracy that is desired for a parti-

cular landmark fix. The main point is that Scheme "B",

Modification Z, does not lend itself so readily to the Quick

repetition of sightings on the same landmark, using the same

reference star to obtain all the necessary intersecting sur-

faces of position; at the point where it becomes desirable

to obtain, say, twenty sightings of a landmark to ensure the

required accuracy, Scheme "C" will probably be found to be

more efficient.

In the situation under discussion, the landmark will never

be more than a few degrees below the skyline: remember that

we found a maximum angular distance of 17 ° below the skyline

for rmi n 300 km. The length of the visible arc it describes

as it drifts across the beam of the CSM will be 140 ° in relative

bearing for rmi n 300 km; at somewhat greater distances it

will fall below 114 ° (i. e. , Z x 57o), and so will always be with-

in "SXT reach" of a reference star situated close to the skyline

and on the beam of the CSM, i.e., at relative bearing 90 ° on the

starboard side, or Z70 ° on the port side. It now becomes pos-

sible to pickup a landmark as it rises, together with a reference

star in the location just noted, make repeated sightings as the

landmark and the same star as the landmark drifts astern,

stopping only when the landmark sets. It might be possible to

make, say, two sightings per minute, or even more, since all

that is now involved is the resetting of the movable arm of the

SXT on the landmark after each sighting (assuming that the

reference star remains in the field of the fixed arm). One

could thus squeeze in a series of twenty observations for a ten-

minute pass.
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Such a series of observations would automatically be

fairly well distributed from the standpoint of the geometry

and the isotropy of the error ellipsoid. The surfaces of

position from sightings made shortly after rising (some-

where in the middle of a forward quadrant), using a refer-

ence star very low in the sky and near the YZ-plane, will

intersect those obtained shortly before setting at quite a

large angle, at least up to well over 500 krn. Both these

planes will be approximately vertical, and so will both inter-

sect the surfaces obtained near the middle of the run approxi-

mately orthogonally. The surfaces -- "slabs" -- of position

near the beginning and end of the run will have a thickness

corresponding to a _ 70 m, since they will be obtained at

extreme ranges corresponding to about 700 kin; in the middle

of the run, the thickness of the (more or less horizontal)

slab of position will correspond to a = 40 m at rmi n 400 krn;

50 m at rmi n = 500 kin, etc. If only three observations are

obtained, one each at the beginning, middle, and end of the run,

the resulting error ellipsoid will be somewhat anisotropic. In

the first place, this hardly makes any difference. In the second

place, even if it made a difference, some isotropy would be

restored by repeated observations made at approximately

equal time intervals, because the geometry of such a pass

automatically causes the landmark to spend more time nearer

the middle of the foreward or aft quadrants than near straight

abeam.

Assuming (1) that the rate of making sightings on the same

landmark, using the same reference star, is 2/rain, (2) that

it takes Z minutes to pick up a fresh landmark and possibly also

a fresh reference star after the previous landmark has gone out

of reach, and (3) taking a = 60 m as a typical uncertainty, and

10 minutes as the duration of the landmark pass, we obtain for

a typical efficiency the result: 20 x (15/60) Z per 12 minutes, or
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about 0. I/min. This is not very high, but higher than can be ob-

tained by an extension of Scheme "B" to such distances.

As noted before, the whole effort to obtain location fixes on

landmarks slowly breaks down as one goes to landmarks at

greater and greater distances from the subsatellite track. Pro-

gressively the following things happen: (1) the relative bearing

B at which a landmark rises gets closer and closer to 90 ° or

Z70 ° (starboard or port respectively), and the bearing at which

it sets correspondingly approaches 180 ° - B (i.e., approaches

90 ° or 270 ° as B approaches 90 ° or 270 ° respectively); (2) it

becomes increasingly difficult, and finally impossible, to obtain

surfaces of position whose intersections will yield information

about the position of a landmark along the line of sight; informa-

tion is obtained only about the two degrees of freedom transverse

to the line of Light; (37 the duration of the pass during which the

landmark is in sight becomes shorter and shorter, thus setting

smaller and smaller limits to the number of observations it will

be possible to make.

One final note is in order concerning relative efficiencies of

Schemes "B" and "C". It will have been noticed that the improvement

in efficiency of "C" over "B" at distances at which they are competi-

tive arose from the fact that in "C" the use of a single reference star

near the pole of the orbit, and hence in position for a comparatively

long time, made it possible to save the time consumed in "B" in pick-

ing up fresh reference stars at frequent intervals for observations of

the type SIOL 1 and SIOL 3 (see Figure XI-4). It will be recalled that the

necessity to replace stars for sightings in these positions at frequent

intervals was the determining factor in limiting the rate at which

landmarks could be fixed. This situation can be alleviated somewhat,

at distances near the upper limit for which "B" can be used (i.e. ,

rmi n = 200 to 300 kin), by selecting reference stars for sightings

Nos. 1 and 3 toward the pole of the orbit, as far as the SXT will reach.

This will generally put them inside the orbital "polar cap" -- hence in
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a useful position for a relatively long time, and not requiring immediate

replacement. If reference stars are chosen in this region, however,

some of the strength of the intersection geometry is lost -- less so if

the stars for sightings Nos. 1 and 3 are close to the skyline, more so

if they are higher. Reference to Figure XI-4 will show, incidentally, that

the general rule that the poles of the three intersecting planes of posi-

tion should be within ZO ° or so of the vertices of an octant on the sphere

is still valid.

13. Summary of Observing Schemes

Table XI-2 summarizes the various observing schemes which

have been discussed in paragraphs 6-1Z above showing their coverage,

number of observations per landmark, accuracy of resulting fixes and

efficiency.
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C. ANALYSIS OF EQUIPMENT AND OBSERVING TECHNIQUES

In view of the conceptual feasibility of landmark positioning by

means of SXT observations, methods for making observations for seleno-

detic purposes have been studied. Photographing through the SXT, as

outlined below, appears to be the best means of observing and recording

observations for later reduction.

1. Photographic Methods for the SXT Observations

Two methods for obtaining photographic recordings through the

SXT were investigated: { l) single line-of-sight photography and (2) dual

line-of-sight photography. These methods are outlined in Table XI-3

showing the operations with the SXT and Scanning Telescope (SCT) required

to make a single observation.

For single line-of-sight (LOS) photography it would be necessary to

use the Inertial Measurement Unit {IMU} to define the orientation of the

SXT lines-of-sight (trunnion and shaft angles). SXT angles can be re-

corded within about 10 arc-seconds; the IMU alignment, however, is

limited to a precision of about 1 mr (3.44 arc-minutes) which would

in turn severely limit the accuracy that can be obtained with SXT

sightings. Because of this restriction, single LOS photographs are

not recommended for selenodetic purposes.

With the dual LOS photographic method, orientation of the fixed

SXT LOS would be established from the recorded star field and the

angle between the two LOS would be obtained from the SXT readout,

plus a small correction from measurement of the offset star-to-

landmark on the photograph. Thus the IMU would not be required for

orientation reference, although it would be useful for setting the fixed

LOSon a selected star. Application of the dual LOS method would

require that the SXT lines-of-sight be reversed from their normal use in

midcourse navigation, as shown in Figure Xl-12, as the movable LOS

(star LOS) is used for landmark photography and the fixed LOS is used
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for photographing the star field. (This aspect will be considered in a

later discussion. )

As described in Table XI-3, two preferred modes of SXT dual-

LOS photography are envisioned. These modes differ only in the work-

load imposed on the astronaut and in the demands for CSM electrical

power and attitude control propellant.

Mode 1: Attitude control action is similar to that em-

ployed in the midcourse navigation measurement. IMU is

off. The astronaut uses the minimum impulse controller to

position a desirable star field within the SXT fixed LOS field

of view. When the drift rate is sufficiently reduced, the astro-

naut points the SXT movable LOS, so that the lunar feature is

within the field of view. A photograph is taken, and a mark

command is simultaneously made to record time of exposure,

SXT trunnion angle, and SXT shaft angle. This record pro-

vides the largest component of angle landmark-CSM-star; the

photograph provides the small (fine) component.

Mode 2: The attitude control action is similar to that

employed in an orbital navigation measurement. IMU is oper-

ating and aligned, but is used only for attitude control. A

desirable star pattern is centered in the SXT fixed LOS field of

view and is automatically maintained within the field of view

by the stabilization and control system. The astronaut directs

the SXT movable LOS so that the lunar feature is within the

field of view. A photograph is taken, and a mark command is

simultaneously made to record time of exposure, SXT trunnion

angle, and SXT shaft angle. (Details as before. )

If it is found through appropriate simulation tests that the CSM astro-

naut is able to employ Mode 1 successfully, there will be no special

demands on the CSM electrical power and attitude control propellant

for dual-LOS photographing operations. If, however, it develops that
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the astronaut must employ Mode Z, the mission requirements will dic-

tate how many SXT dual-LOS photographs can be taken as limited by

the power and fuel budget. It is noted that in both modes the astronaut

employs the SCT as an aid to center the SXT fixed LOS on the star

field; this is similar to midcourse navigation where the SXT fixed

LOS is centered on a landmark. The Slave Telescope Switch in the

0 ° position will align the SCT along the SXT fixed LOS enabling the

astronaut to select the star pattern.

It would be advantageous if the astronaut could neglect the exact

positioning of the SXT fixed LOS on the star field, as considered in

Mode 3 (see Table XI-3). In this case, he would only be required to

ensure that the SXT fixed LOS clears the lunar horizon. However,

the SXT 1.8 ° field of view covers only Z. 54 square degrees, so

chances are that a random positioning of the SXT would provide

only one star greater than 7th magnitude within its field of view. It

is not possible to photograph stars of this high a magnitude through

the SXT and have them superimposed on a photograph of a lunar fea-

ture, because it is necessary to use a fast exposure of the order of

0.01 second for the landmark to limit its image smear in the photo-

graph. With this exposure time, it would be necessary to acquire

at least a 4th magnitude star in the SXT field of view to obtain a suc-

cessful star exposure (see Part B. 2 below). Therefore, a random

star field would not be useful and the astronaut would have to select a

desirable star pattern, as described in the preferred modes of opera-

tion, Modes 1 and Z.

While in lunar orbit, the high angular rate of a lunar feature with

respect to the CSMmakes it necessary for the astronaut to use the SCT

to position the feature within the field of the SXT movable LOS. With

the Slave Telescope Switch in the star line position, the astronaut

centers the lunar feature in the SCT field of view. This action will

bring the lunar feature within the SXT field of view. The astronaut

can center the feature in the SCT to within 1 milliradian. At 120 nm
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slant range, this SCT centering error amounts to 0. 12 nm on the lunar

surface, while the SXT 1.8 ° field of view encompasses 3.8 miles.

2. Photographic Requirements for SXT Dual LOS Method

At present, the SXT "star" LOS {articulated) has a transmit-

tance of about 20% and the SXT "landmark" LOS {spacecraft fixed)

has a transmittance of about 6%. It is assumed that the light paths

can be reversed for dual LOS photography, either temporarily or

permanently, so that the transmittance of the fixed LOS will be 20%.

With this transmittance and an exposure time of 0.01 second, it

should be possible to photograph 4th magnitude stars if fast-speed,

non radiation-resistant film can be used within the CSM. For example,

the estimated integrated exposure energy required to record a 4th mag-

nitude star through the SXT is . 00224 meter-candle-second. This

exposure should produce a satisfactory density on Kodak Royal-X

Pan or Kodak Spectroscopic Type ID Z films. It is recognized that

the actual value of the optimum exposure, with the complete SXT-

camera-film combination will have to be determined by experiment.

However, at this time, it appears that there should be no difficulty

in obtaining a suitable superimposed exposure of a selected star

(4th magnitude or higher) and a lunar landmark with existing ex-

treme contrast films, such as the multilayer film developed by

Edgerton, Germeshausen and Gries.

As noted earlier, in order to obtain photographs through the

SXT it will be necessary to reverse the roles of the lines-of-sight of

the SXT. This could be accomplished by changing the light transmission

of the existing beam splitter in the SXT fixed LOS, and interposing snap-

in, snap-out attenuating filters in both LOS light paths. In this manner

the rays of the lines-of-sight as used in the G&N operation could be

temporarily rover sod for dual LOS photography.
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If the SXT had originally been designed so that its fixed LOS were

used for star sighting and its movable LOS used for landmark observa-

tions, there would be no need to make any modifications for the proposed

dual LOS photographic operations, other than installation of a simple

recording camera.

A possible location for the SXT camera that will not require major

changes in optics-nav-base design is at the SXT Eyepiece and Relay

Assembly (Figures XI-13 and XI-14). The mirror closest to the eyepiece

ocular can be made to move into or out of the optical path, much as

in a typical single lens reflex camera. With the mirror at the "in"

• position, the SXT can be used normally. At the time of exposure, the

mirror snaps out of the optical path, and the image is transmitted to

the camera. It is estimated that a 16 ram. film casette camera would

be suitable for photographing through the SXT. A control switch added

to the optics panel would be used to actuate the camera and the mark

command to record the time of exposure.
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APPENDIX A

ANALYSIS OF THE ACCURACY OF LUNAR ORBITAL PHOTOGRAPHY

FOR DETERMINATION OF SELENODETIC POSITIONS

It is assumed that a satellite is traveling around the moon (the theory

would be identical for a satellite traveling around any body), and that there

is mounted on the satellite a camera whose optical axis is directed fairly

accurately toward the center of the moon. At regular intervals, the camera

takes photographs of the lunar surface to be used to establish the coordi-

nates of points on the lunar surface ("target points") with respect to a

coordinate system that is anchored in the body of the moon.

To aid in this task, the following additional information is assumed to

be available:

(1) Estimates of the position of the camera (as a function of time) with-

in a certain accuracy; i. e., the positions and their variances from earth-

based observations (radar tracking) and subsequent accurate determination

of the orbit. The camera positions thus obtained will be originally in topo-

centric (tracking station) or geocentric coordinates, which can be converted

to coordinates with the moon's center of mass as origin when a definitive

circumlunar orbit is desired. The scale of these coordinates will be in

meters, based on an assumed value for the velocity of light. One would

expect this coordinate system which we might call "barycentric coordi-

nates", to differ systematically from the "map coordinates" of item {2)

below.

(Z) Estimates of the coordinates of at least a sample of the "target

points" (lunar features} and their variances will be known from earth-

based selenodetic investigations; these coordinates are based on the ap-

parent figure of the moon, and will be referred to as "map coordinates"

where necessary for clarity. The scale of this system is provided by

the radius of the moon. In the treatment discussed below, it will be seen

that the coordinates of unknown points will have this same scale.
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In addition, the following auxiliary information would be helpful, but

is assumed not to be available:

(3) Linear distance of the camera from one certain point on the lunar

surface, observed by radar within the satellite itself.

(4) Estimates for orientation parameters of the camera (i. e., direction

of the optical axis and orientation angle of the camera on the optical axis),

(with the associated covariance matrix) for every exposure, obtained for

instance from stellar photographs taken with a camera that is rigidly mounted

back-to-back with the camera taking the moon photographs, such that the

optical axes of both cameras lie in the same line.

It is the purpose of this analysis to estimate as closely as possible the

accuracy, expressed in terms of standard deviation, with which coordi-

nates of the lunar "target points" can be determined, specifically in "map

coordinates", This accuracy depends, of course, on the entirety of the

circumstances of the experiment. Relationships between the parameters

of the experiment and the resulting standard deviations will be kept as

general as possible, so that results derived can be used either to create

experimental conditions such that some predetermined accuracy require-

ment can be satisfied, or that the accuracy of results for a variety of ex-

periment conditions can be predicted.

A completely rigorous prediction would require the analysis of observa-

tions gathered in the actual situation, which is clearly impossible. However,

it is essential only that a fair estimation of the expected accuracy will be

available, and this can be obtained by investigating an idealized model situ-

ation. The problem consists of establishing the normal equations which

one could obtain if the unknowns were solved for by the method of least

squares, and finding the covariance matrix of the unknowns, by inverting

the matrix of the normal equations.

The elements of the matrix of the normal equations consist of product

sums, mostly arrived at in such a way that every condition equation
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contributes one term to the sum. In the case that the sums contain a suf-

ficient number of terms, originating from condition equations pertaining

to a fairly uniform variation of the observing conditions, the sums of

products can be replaced by definite integrals over the same products.

(If these integrals are difficult to evaluate, their values may be approxi-

mated by the procedure employed in a recent paper by Eichhorn and

WL11iams (1963).)

The general treatment of the problem by means of approximation of the

sums by integrals produces general formulas, instead of numbers that are

valid only in one instance.

Alternate Approaches. It should be emphasized that this investigation

cannot point out the best (or most accurate) way to establish coordinates of

lunar target points by circumlunar satellite photography in general. It is,

however, intuitively clear that coordinates of points will be most accurate-

1y determined by sighting {and photography is essentiaUy equivalent to

sighting) if the lines of sight intersect at the target in an angle of 90 °. This

will occur in the presently discussed situation only if the field of view of the

camera is at least 90 °. It is quite possible to manufacture a camera which

will provide the equivalent of a gnomonic projection (or a projection which

can be transformed into a gnomonic projection by a known relationship)

over a field greater than 90 ° diameter. However; the standard deviation

of a position measured on a photographic plate (glass or other) is for

short focal lengths (i. e., under 7000 ram), roughly proportional to the

camera's focal length. This means that the weight of a position is pro-

portional to the square of the focal length, and thus that the focal length

of the camera should be as long as feasible. If one considers that doubling

the focal length will - ceteris paribus - multiply the "value" of the results

by a factor of four, and that the relative increase in the cost of the experi-

ment caused by doubling the focal length is probably of much smaller magni-

tude, at least up to a certain point, it is evident that the economy of the situ-

ation demands that the focal length be made as long as other technological

circumstances of the experiment will permit.
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The linear size of the camera field is one of the limitations imposed

on the focal length, as the accuracy of photographic portions becomes very

sensitive to deviations of the film from a plane when the size of the field

exceeds, say 5 ° 5 ° •x Plates used for wide-angle astrometry (fields of

5° 5°x and above) are usually carefully tested for planeness before use.

A combination of long focal length and wide-angle field necessitates

large plates which cannot always be made with the required flatness, and

would present formidable handling problems in space. It seems that the

maximum practicable plate size, in relation to the smallest acceptable

field of view, determines the upper limit of the focal length.

It should be pointed out that much more favorable geometric conditions

can be achieved by mounting not just one, but a battery, at least two, of

cameras on a single vehicle. If the satellite carries two cameras, whose

optical axes make an angle of 90 ° with each other, and an angle of 45 °

with the direction to the center of the moon, the same objects on the lunar

surface will, in different positions of the camera-carrying satellite, be

viewed from directions which differ by 90 ° and thus be most accurately

determined by the intersection of the rays.

The foregoing possibility was not considered in this analysis because

only one camera was stipulated. It seems, however, that this stipulation

may be standing in the way of the optimum instrumentation which would

make a circumlunar satellite selenodetically most effective.

A-4

Consider, for instance, the situation in which the photographic
instrument consists of two cameras, which are mounted "back to

back" and whose optical axes are parallel to each other. In what

follows, we shall call such an assembly a "double camera. " If

both cameras are triggered simultaneously, one will photograph
the moon and the other the sky. The photography of the sky will
be the same which one would have obtained with another camera

situated on the moon at the point where the optical axis of the

satellite camera directed towards the moon penetrates the moon's

surface, the optical axis of the hypothetical ground-based camera

coinciding with the axis of the satellite camera but pointing in

the opposite direction. The image of the camera-carrying

satellite would then appear on the star photograph at the pene-

tration point of the optical axis of the hypothetic ground-based
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camera. Thus a double camera mounted on a satellite will give
the same type of information as a surface based camera which

photographs a satellite. It follows that those techniques of

terrestrial satellite geodesy involving observations of the satel-
lite against the star field could be followed for "satellite seleno-

desy" without the necessity of a lunar landing, if double cameras
(or one of their equivalents) are employed.

If more than one double camera is mounted on the satellite in

a rigid assembly, which can be triggered at the same time, one may

employ the same reduction techniques which are employed in ter-

restrial satellite flash triangulation. In such an assembly, only one

"sky camera" would be necessary, as the directions of the optical

axes of the several moon cameras and the sky camera may be ac-
curately calibrated before the instrument assembly is used on a cir-

cumlunar satellite for selenodetic experiments. Accuracy predic-
tions for experiments with more than one moon camera can (cauti-

ously) be made from accuracy predictions for only one lunar camera

as treated in this paper, because one may regard the two halves of

the field of one camera as two fields produced by separate cameras

and one may make certain extrapolations, provided appropriate pre-
cautions are observed. In any case, one should consider whether

the presently planned arrangement provides an optimum balance

of cost and accuracy.

Geometrical Conditions. (See Figure pg. A-B3} We arbitrarily anchor

within the body of the moon a right handed rectangular Cartesian coordinate sys-

tem, the "selenocentric system", and orient the axes of this system in such a

way that it best fits the coordinates of landmarks derived in one of the various

selenodetic investigations that have been carried out by means of earth-

based astronomy, i.e., one of the "map coordinates" systems. In such a

system, let the coordinates of a point on the lunar surface Ca "target point")

be represented by the position vector X -r = iX, Y, _.}, with X toward the mean
I!

center of the visible hemisphere (near Mosting A} and _. toward the lunar

north pole.

The position vector of the camera (lens center) in the selenocentric
w'V

system is _--- = ( _ , H, Z}. The orientation of the camera is given by

(1) the normal unit vector n , which is parallel to the optical axis of the

camera, which originates at the point where the optical axis penetrates

the plate, and which points away from the moon's surface; and (Z} an

orientation parameter which measures the angle that a certain (arbitrary)
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camera-anchored direction in the plane of the plate makes with a zero

direction (in other words the position angle of the camera on its own optical

axis). If we donote the vector from the center of the lens to the target

point by x _- = (x, y, z) we have the relationship

x =x - = , (1)

which is one of the fundamental equations of our problem. In (1), it is, of

course, convenient if all vector components are referred to the same system

of axes. (We are ignoring for the time being the fact that, although (1) is

geometrically exact, in a practical situation the numerical values substituted

for a particular X may be obtained from a "map system" while those for _

may come from a "barycentric system" derived from tracking data. )

We now define a camera-anchored coordinate system as follows. The

origin is at the point where the optical axis penetrates the plate. The xy-

plane is (parallel to) the plane of the plate. The positive z-axis is in the

same direction as the normal vector n , defined above and the positive

x-axis is in the direction of an arbitrarily fixed fiducial mark (which will

appear on all plates in exactly the same position with regard to the camera).

In what follows, it will sometimes be convenient to assume the origin of

this "camera system" at the center of the lens, but with axes parallel to

those just described. This can be done without committing a serious error

because the distance between the center of the lens and the penetration

point of the optical axis is short.

Disregarding for the moment the fact that the origins of the selenodetic

and the camera systems are different, we may describe the orientation of

the two systems with respect to each other by a set of Eulerian angles /_ ,

d , _- , which are defined in such a way that the relationship between

the components of any vector x in the two systems is given by the equation

x = e (z)
-- C XS*
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in which x and x represent the components of the vector in the camera
_C _S

system and the selenodetic system respectively, and _ is a transforma-

tion matrix defined by

f_ = _3C_) _, (0) _3 (F) {3}

in which _1 { _ } indicates the matrix that performs a rotation by the

angle _ about the x-axis, and _ 3 { 7- ) the matrix which performs a

rotation by 7- about the z-axis, etc. It can be seen that/_ , 3" , "7- would

be the longitude of the node, the inclination, and longitude of the perihelion,

if the xy-plane of the camera system were to define a planetary orbit plane

{with the x-axis pointing toward perihelion} with respect to, say, an

equatorial or ecliptic system {or in our analogous case, the selenocentric

system}, in which the XY-plane is the fundamental plane.

In what follows, we shall occasionally need the elements of the matrix

_'_. We thus write

/o(r! /lco_,'r co_p- s,_ r cosd s,_/o
! _ ;

-c_s 7-s;,_:- s::.,T{vs ,: co_/o

--5,;n'7" _/_/o _ cos':-cosd" coslo

5/._. D- Cosp

St,'_q7"S/r. G-_

i
--CoST"SlY./C !

C05 _'- /

where o/, /3 , and _ are a triple of orthonormal vectors whose meaning is

clear from the above . From (1} and (Z} the following relation exists between

the coordinates of a target point in the camera system and the other quantities

involved:

_o -- _ (x--)_ {s}

In order to establish a relationship between the coordinates measured

on the plate and the unknown parameters, we establish the relationship be-

tween the camera centered coordinates x of a point and the coordinates
_C
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and _7 , with which the image of the point will be measured on the

photographic plates.

For this purpose we make the assumption that the axes of the system in

which the coordinates of the images are measured are parallel to the x and

y axes of the camera centered system, but that the coordinates of the pene-

tration point of the optical axis in this system are -u and -v respectively.

If now _ and _2 are measured x and y coordinates respectively of the

image of a point whose camera-centered space coordinates are x, y and z,

then we have

where f is the focal length of the camera, expressed in the same units as

and _ . Then with the help of (4), (5) and (6), we set up:

U-_+_-_

V-_÷v-_

"/, ( X - Z } +'),_ (Y-H) + "y_ (2 - Z) -- 0

_ ( _--)+/_,(Y-H}-_p, (z- z) = o
_(-f_-__-_--),_(y-H) +y, (z -z)

(7)

which are the fundamental equations of condition connecting the measure-

ments 4 and 77 to the unknowns, namely u, v, {, --, H, Z, >_.h_, _,/o, 0-. "7",

the latter three occurring implicitly in the o< , /9 , and _/. (The height

h is also unknown, but is a function of ( _--- , H, Z) and the radius of the

moon, which implicitly sets the scale. )

The 'klnknowns" or parameters may be classified in three groups:

a. u, v and f will occur in every exposure, and retain their same

values for all different plates.
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b. Only a selection of X, Y, _. will occur on every plate, but whenever

they occur on different plates, they have the same values.

c. The values for _-_ , H,Z , /o , dr, I-, will be constant for all

equations of condition that are derived from the same plate (exposure}, but

will vary from one plate to the next.

Linearization of the Equations of Condition. If we want to use equations

(7) as condition equations in a least squares solution, we must bring them

into a form where observations and unknowns are connected with linear re-

lations. This is done by assuming that approximate values for the unknowns

and the observations are available from some source, so that the functions

may be developed as Taylor series in the corrections to the unknowns, and

broken off after the first-order terms. We thus need the derivatives of

U and V with respect to the observations and the unknowns.

Carrying out the differentiations, we obtain the following expressions:

o ,.j, v i ,_(u. _..,')

/

whoroi.the i,:m.tr x.('O)O'
We also see that

t./ × ,_ V _y_ (9)
9-/'- 7_ ; 9f- z

where, of course, x, y, and z must be expressed in terms of the components

of X, _-, andof/o , dr, 1- by equation (5}.
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Using the vectors __ , __ , _ defined by (4), we may rewrite the

system (7):

o<-C×--) . V= q + v- f _ (x- -)
U ; _ +U- f _ _y_(X___) , 7.(____I) (7a)

Differ entiating U as expressed in (7a) with respect to _--- , we get

from which one sees that

As o( , _ , _ are a triple of orthonormal vectors, so that __ =_ x o( , we

get in more conventional notation:

_}- "(×- = -
(I0)

and analogously

(11)
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In order to obtain the other derivatives we need, we take the derivatives

of _ with respect to the orientation variables /O , cr , "F . It turns out

that

/ r 1

L

where e3r= {0, O, 1),

ta =/_:o: ,,- c13)
9 a" _6___;,',"- .j"c<,,

and

t:')9--_-- = {14)

From (7a) we get immediately, using {1Z)

-F jp - - -

and from this, considering the well known formulas

a" (b.... x c) =b " (c x a)=c_ _ "(a_ x b)_

and (a_.x b_.)-(c x _d) = (a_° _c) (b " d) - (a " d) (b " c),

we obtain
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and quite analogously

(16)

where r'= (X- :)_+ ('Y-H)" + (Z-Z)" (17)

Similarly, we get by differentiating (Ya) with respect to

(13)

., ,_u (x_- _-,_ +F _-E = _" _ _- -

d" and using

from which we obtain (considering that o{_os'r-___/n_'={c.#/oo s,,I/o.0))

3u _'{ %.',-r+,v[(X- z)-2_- 7' r
(18)

and analogously

_I' [( ).°,,,..<v-H).,.,..]} (,9)
Finally we get from (Ya), considering (14) and (6)

_d __ (-,-/+v) _Q___= +(_+)v u) (zo)
_),r

Specialization of the Derivatives. We now have all the derivatives

necessary to set up the equations of condition from which the normal equa-

t-ions can be established. To make general accuracy predictions from the

equations as they now stand is extremely difficult due to the unwieldiness

of the expressions. In order to obtain expressions that are easier to
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handle and still provide a realistic model for the actual situation, the

following assumptions are made:

If the satellite revolves around the moon strictly in the equatorial or

XY plane, we may write

--_= (R + h) cos 4

H = (R + h) sin 6

Z=O
(Zl)

where R is the radius of the moon, h the height of the vehicle above the

moon's surface, and # is an angle describing the position of the satellite

(selenocentric longitude, measured eastward from the x axis toward the

y axis). We also assume that the attitude of the vehicle can be controlled

well enough so that the xz-plane always coincides with the XY-plane, and

that the negative z-axis (i.e. the optical axis of the vehicle) always points

towards the center of the moon. This means that

p=9o°+ _, =-- 90; _=o (zz)

Furthermore, let us assume that the photographic plate is sufficiently well

aligned that we may put u = o = v. If we evaluate the derivatives given by

(8)-(Z0) under these assumptions, we obtain, after some calculation:

_U

_u
3H
_u
_z

2U_Y

/
t c_s4 + +"_-.;_*I
0

(Z4)
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Dv _V

(Z5)

2U
9m

V

while (8) remains unchanged.

In order properly to simulate the actual situation, we must now express

the factor - 1/z by the measured coordinates _ and y and the parameters

R and h (which are constant for a particular frame), and f , which is con-

stant for the whole survey.

From the geometry of the situation we have

z +(h+R) Z +x 2 +y

from which we obtain,

cerning u and v,

/

Z ---- / -/

\
I+ _,,

considering equation (6) and our assumptions con-

h +,e--x/_ (Z7)
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Although (27) is rigorous, it is not very useful because it contains _ and

_? irrationally, thus immensely complicating the investigation. There

are, however, two fairly small quantities that can be used to develop ex-

pression (Z7} as a power series, one is h/R and the other _+ _7_ The
_z

former will be small if the height of the orbiting vehicle is small compared

to the moon's radius, and the latter will be smaller than one for all cameras

where the diagonal of the field spans less than 90 ° . For the planned experi-

ment, where h and the field of view are stipulated to be in the order of

50 km and less than 60 ° respectively, h/R is about l/B5 and _-_-_
_2 cannot

exceed 4/25, so they are certainly small enough. The expansion of (27}

yields, up to the fourth order, for 1/z

In what follows, we shall carry the development only to the second order

and thus write

J l ' _ _ {,-9}below}(i.e., /x __

(Z7b)

so that we now have

_d
2-

du

_H

_U

iJO _ 0

{24a}

and
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The Normal Equations. The coefficients of the normal equations are

the sums of the products of the derivatives. For that part of the normal

equations that originates from considering the various points on the lunar

surface whose images will appear and be measured on a plate, these sums

can be approximated by integrals, as pointed out by Eichhorn and Williams

(1963). There itwas shown that

z÷k
/-,,/ o _, if i and k are both even

O if either i or k is odd (or both odd)

on a plate of the format a x a, where n is the number of points on a plate.

For any plate with n stars on it, the product sums will be given approxi-

mately by the following expressions; (in which we introduce the abbreviation

= .__ )'7 _ 1.9 X 10 -3 (zg)
F" FP

and neglect _ 2):

I

I
!

I

I

I
I

r
I

l
I

[ °" ]

)-+ _p h

(30)
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o.<,,
2_V_ _v

l_U1_
_p.j -

__ o*/',_,_)

,,'h- ,' _ ).+co,'_.,,-Y/-/,_ )]

}-H - W

z "'>]

_u __ _,, ,_ ,)

)c, _ I/'7"2 4"-

F • 144

(30)
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="pz 144

_.I 3Vl at_;j--
_. "°&v _v =- g{_ ,r_o" ,gv

Except for the product sums involving derivatives with respect to the X, Y, Z,

which require special treatment, those product sums not listed are zero.

If we denote

we get from (30) the following expressions for these approximated product

sums which are different from zero:
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H,H

[H,p

H,u

H,{

/rQ _ . _,

]- " 4- ' ,_)- -E' cos_

] - _-__,__

_a
[zz] - ,,,(,-_,_)

[_,o] _o' ,s)= - _(,-_

2

[ ] 7o-,+o 'k]p,p _ a6o_2 _ + F -=_

= '__I_"[p._,] ,=.,_+;') -_[,,.,_]
_ ¢22

(31)

_B

The Covariance Matrix of the Parameters. In order to predict the

expected accuracy (expressed, say, by the variance or the standard devia-

tion) of the lunar map coordinates of the "target points" derived from the

Orbiter images, the covariance matrix of the quantities of which the coordi-

nates are a function must be known. These quantities are primarily the

tmeasurements and _7 , while the parameters are, of course, _ , H ,Z,

/_ , _, lr , u, v, f. The relationship between the coordinates X, Y, _. and

the measurements and parameters is given by (5) and (6). As was pointed

out in the above quoted paper by Eichhorn and Williams (1963), the variance
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of a quantity which is derived from measurements in the way these seleno-

detic coordinates are obtained may be regarded as composed of the "random"

variance, due to the random errors in the measurements _ and _7, and the

variance of the systematic error, due to the unavoidable inaccuracies of

the parameters. (The analogous expression in the paper referred to is the

"plate constant variance"l. It will be shown in what follows that the most

important part of the "systematic variance" (i. e., the variance of the

systematic errors) can be kept below the accidental variance. (Note that

the expressions "accidental error", "accidental variance", etc. retain

the rather specialized meaning of "being associated with the accidental

error of measurement" throughout this discussion. )

We will from now on assume that the parameters u, v and f are identical

for all frames, and that only the camera position -q , H, Z , and the

camera orientation /o , 0" , "/" are the "frame constants" (corresponding

to the plate constants in conventional photographic astrometry). It is

quite plausible that the parameters u, v, and f should be "problem con-

stants" and not frame constants, if one considers that the relative position

of frame and camera can very accurately be kept in check by (say) employ-

ing fiducial marks. As the camera in space operates as if it were not

subjected to gravity, and as there is no "handling" in contrast to terres-

trial applications, there is little reason to assume that u and v will change

from one frame to the next.

The same reasoning cannot quite be applied to the focal length, be-

cause it changes with the temperature. But then, frames will be taken only

of parts of the moon's surface which are exposed to sunlight; while taking

frames, the camera will thus always be exposed to the sun and under these

circumstances, the apparatus will have the same temperature (and there-

fore the same focal length) for all frames. And even if the focal length varies

from one frame to the next, a two-parametric formula (containing a tempera-

ture term) should satisfactorily represent the focal length in all frames.
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The covariance matrix of the parameters -, H, Z , /o , o- , _ , u,

v, f can now in principle be established in the following way:

From the observations available for every target point, set up the

normal equations for these parameters for every frame, and combine

them (simply by adding corresponding terms) with the inverse covariance

matrix of estimates for the parameters that may be available from outside

sources, for instance, vehicle coordinates -, H, 2 from earth-based

observations, and orientation parameters /o , _r, _" from, say, a double-

camera arrangement as previously described. * Thus, every frame would

yield a system of normal equations. If the frame constants =- , H, 7- and

/o , o" , q- are eliminated from each of these systems, we obtain from the

complete equation system for every frame a reduced system which contains

u, v, and f only. The matrix, which is the sum of the matrices whose

elements are the coefficients of the reduced systems, is now, except for

a constant factor which is the inverse variance of unit weight, the co-

variance matrix of u, v and f. Thus summation will, of course, in the

general case have to be replaced by an integration, the same process that

was, in principle, applied to obtain the estimates for the product sums.

This information may now be used to get the covariance matrix of a typical

set of frame constants and the u, v, f, by going back to the triangularized

matrices that were established during the process of eliminating the frame

constants from the normal equations.

In principle, this process is easy and clear cut, and involves only

direct algebraic operations so that their results, namely the terms of the

covariance matrix, can be obtained. In practice, however, the situation

We are tacitly assuming that :-, H, / and X, Y, _. can be rigorously

observed in the same system. This assumption is, of course, only ap-

proximately true and was made only in order not to let the investiga-
tion become unmanageably complicated. For the purpose of actual

reductions, the systems in which the camera coordinates and the lunar

coordinates are reckoned would have to be connected by a six-parametric

transformation, i. e, a zero point shift and a general rotation.
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is much less simple. While the terms of the inverse covariance matrix

(which are given by and composed of expressions by (31), zeros, and the

inverted covariance matrices of the available estimates of the parameters)

are relatively simple, the process of elimination and the inversion of the

matrix in general involves a formidable number of algebraic operations and

leads to expressions of such complexity that they become virtually unmanage-

able.

The problem is, therefore, to obtain a reliable estimate of the accuracy

of the positions without a complete and rigorous inversion of the matrix of

the normal equations of the parameters. We shall see in what follows that

this is very well possible, provided that the general conditions are such

that the expected systematic variance of the positions does not exceed the

expected accidental variance, so that the final accuracy of the coordinates

is still primarily determined by the accuracy with which the positions of

the target points, as recorded on the frames can be measured.

If we assume temporarily that previously obtained estimates for

neither the vehicle coordinates - , H, Z , nor the attitude parameters

/o , cr , -? are available, we can try to eliminate the frame constants

from the normal equations for every frame. The coefficients of a system

of this type are, of course, given by (31), and zeros wherever required.

The elimination can be performed by following the very useful scheme

of S. Vasilevskis. In line with the notation used in his paper (which is fairly

standard in the classical literature on least squares), we denote by

equation system
J

from which - has been eliminated, ( k and ju are any two of the remain-
r I

ing parameters); we denote by [_k , /[4, 2J the appropriate coefficient

of the system from which - and H have been eliminated, and so forth.

[_._ ,6]_o_id_e_,o__ou_s_bo_ coo_f_on_sof_os_o_f_o_
which all the frame constants have been eliminated and in which only the

"problem constants" u, v and f remain.
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One obtains after a somewhat tedious calculation:

[..H.,]=

Q_ 7%o,_ =(#-_g)+_:'O - ,_)
6h °-'_o,'_O-_o5) +_¢'s;oxe(1-d-J)

6

[H _,1] =

<;li i <<,_ @ I- _ c_
61, _'¢o_'<,o-_o_).i'%,_',_(l-d-5)

6

[=,z,2]: _ _'-__) (3Z)

[z o-,2] -- ,Fa',,, _, ,<'V,'-J; )], - rLT_,,-_ ,_)+

[z.,J.2]= _0-_ 5)

[,,=.<,._]_ ,,0<_2-5--,<__[,,.,,_ ,.,,]
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Those not listed are identically zero, at least up to terms of the order

We further find that all coefficients of the system from which the frame

e., [_, , /,,, 6j ) are zero.constants have been eliminated (i.

The way the calculations were made shows that the problem constants

and the vehicle coordinates are linearly dependent, at least up to quantities

of the second order ( _ is a small quantity of the second order), and that it

is therefore impossible to solve the problem, unless a different approach is

used or unless estimates for the vehicle coordinates are available. As we

are actually assuming the availability of estimates for the vehicle coordi-

nates (affected, of course, by the unknown difference between orbital bary-

centric coordinates and map coordinates), this result poses no real threat

for the feasibility of the project.

I

l
I
I

I
i

For the sake of completeness, we list below some elements of the co-

variance matrix (divided by n, the number of contributing observations and

the variance of unit weight) of the frame constants. _ , /U denotes the

element thus described. Those not listed are zero.

( > _21_ " I (/ I_) 7a4+ 60oa{2+20{ 4

9

_-,--} , (H, H) , <-, H} and<- ,/9) are also different from zero;

these are rather lengthy expressions. Finally, the covariance matrix of

the vehicle coordinates was also computed under the assumption that they

were calculated from a system which contained no other unknowns beside

themselves, especially not the attitude parameters /o , dr , "7-.
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We denote the terms thus obtained by a bar. The results are:

_-Z--_,Z_ as before. Non-zero off-diagonal terms exist only for

i--_t

(34)

From equations (Zl) it was to be expected that the expressions for -

and H would result from each other; this agreement may be taken as an in-

dication of the correctness of the calculations involved in the setup of the

formulas.

The Accuracy of Final Coordinates: Numerical Example. All the dif=

ficulties encountered in the general analytic treatment of the problem could,

of course, be avoided, if numerical models for various conditions were set

up, and the appropriate matrices were inverted on a computer. It may

appear at first glance that thereby more reliable values for the expected

accuracy of selenodetic coordinates would be obtained. But if this advantage

were actually gained, it would be gained only at the not inconsiderable cost

of many hours of computer time and at the expense of the generality of the

treatment.

In the rest of this paper we shall show, in part by heuristic considera-

tions and in part by using the formulas derived above, how the generality

of the investigation may be maintained even if some of the complete rigor

has to be sacrificed. But then, this is really no great loss, as the setup

of a model covariance matrix is not a rigorous procedure anyway.

It is clear from the outset that the circumlunar satellite technique will

bring forth reasonable results only if a region, considerably larger than
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what can be covered on a single frame, is covered by overlapping frames

that are reduced simultaneously as a block. Exactly this is planned; see

for instance Taback (1964) who proposes to cover a target area of

40,000 km 2, i.e., a square field with sides of 200 kin, from a satellite

flying at an altitude of 50 km so that every target point appears on at least

two (but preferably more) frames.

Let us now assume that the camera has a focal length of F , that the size

of the frame is a x a and that the vehicle passes over the terrain at an alti-

tude of h. Assume further that there is generous (at least twofold) over-

lap, and let n be the number of target points on a frame (here assumed

to be the same for every frame), N the number of available control points,

E c the dispersion of their map coordinates in the plane of the moon,

M the number of frames covering the area, and ET the standard deviation

with which the plate coordinates of a target point may be measured on a

frame.

From Table II in the paper by Eichhorn and Williams (1963) we gather

that the average plate-constant variance for the corresponding model type

(called III in that paper) is 3.00.

If we denote by E T the error in a target point coordinate (in the tan-

gential plane) corresponding to 8r , then we obviously have

Er FT
(35)

If we assume that the systematic error of the tie of a single frame to the

system for the whole 200 krn x 200 km block is (3/n) I/2, where n is the

number of usable sharp target points in the overlap of the frame and its

neighbors (regarded as a unit), we see that for something like 30 target

points this systematic error is less than 1/3 the accidental error of measure-

ment; we may thus regard the whole complex of plates as one big plate,

tightly tied together by the overlaps, and treated as such. One can reflect

further that the error _ of u or v (essentially for a square field) will be
v

given by
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where N is the number of control points, and where Er is computed from

(35) using F- c for _-T •

Let us now consider the range of possible values of the errors, making

the most plausible assumptions concerning the range of values for E r ,

the standard error of unit weight; for N, the number of control points in

the surveyed region for which map coordinates are known; for F-T , the

expected standard error of a map coordinate for one of these control points

( F- T ); and for n, the number of usable landmarks per frame ("pass

points" in photogrammetric terminology). Let us list the range of plausible

values, one by one.

For Er : Z/_ is the best that can possibly be done with photographic

plates and sharply defined images; 10/_ is probably optimistic for the

kind of optics and image readout contemplated; it is said that the distor-

tions of the image scan may produce errors as large as 50/_ . For N:

The predicted average spacing of lunar landmarks whose map coordinates

will have been obtained by earth-based astrometric methods is one per

square degree of the lunar surface, or one per 920 krn Z. For a

ZOO krn x z00 km surveyed area, the expected number would thus be 40 to

45. For P-_ : For points near the center of the moon's visible hemisphere

(within 30°), the expected r. m. s. value of F-T is about 300 m corresponding

to a single degree of freedom in the horizontal plane, and about 800 m in

the vertical direction. For points about 60 ° from the center, the expected

value of _-r (horizontal) is about 900 m and _-T (vertical) about 500 m. We

may take ZOO m to be the smallest reasonable value, and 1000 m to be the

greatest. For n: From the l_anger photographs (allowing for some

further improvement), one would guess that the number of sharp features

suitable for making overlap ties will vary with the roughness of the ter-

rain -- that in rough terrain, sharp features will be plentiful and n will

be limited only by the number needed to make an adequate tie; but that in

smooth terrain it may be difficult to ensure that n will be greater than

ZO or 30.
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Optimistic case. If we take a camera focal length f = 7.5 cm (3") and

orbit it at an altitude h = 50 km, we get

Assuming (otpimistically) that Er , the standard error of a lunar map co-

ordinate of a control landmark as established from terrestrial observations,

is B00 m we get

or

_,_. 0.6"-_ r_r_

To keep a'v below I0/_ we would need more than 2500 control points,

while 100 control points of this accuracy will keep _, below 50/_ . From

(35) we see that the zero point accuracy Exo , with which the complex of

the target points can represent the control points, is given by

Exo = "_" Ev (37)

With h/f = 106/1.5 and 6v = 50/_ , for I00 control points with a standard

deviation of Z00 m, we get for Exo about 35 m. From (35), with h = 50 km,

f = 7.5 ca, the error corresponding to Er = 10/a would be El- = 6.6 m

and that corresponding to 6r = 50/u would be ET = 33 m. Since there will

not be even i00 control points available (we have just estimated 40 or 50),

and their errors will be on the average higher than 200 m, it will be appre-

ciated that, to get the most of a circumlunar survey for geodetic purposes,

a high priority should be accorded to trying to increase both the number

of control points and the accuracy of their lunar map coordinates, whether

this is done by terrestrial observations or by preliminary circumlunar

photographic surveys made at a height greater than 50 km above the moon's

surface.

As that error imposed on the lunar coordinates of points derived from

the Orbiter photographs by the errors in u and v is common to all target

points, the estimate of E¢ just given (33 m) and also those given in the
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next two examples must be regarded as a measure of the accuracy of re-

lative coordinates -- i. e._ relative to the coordinate system of the Z00 km x

Z00 km block.

Pessimistic case. Assume now that ET , the standard error of a lunar

map coordinate of a control landmark as established from terrestrial ob-

servations, is 1000 m. Using the same value of the scale factor

f/h = 1.5 x l0 -6 as before, we obtain

Nearly 70,000 control points would be needed to keep Fv below 10/_ , and

2700 to keep it below 50/_ This number of control points will not be

available for some time, if ever.

Compromise. For the region within 30 ° of the center of the moon's

visible hemisphere, we assumed E r (horizontal) _ 300 m and E_-

(vertical)-_ 800 m to be good compromise values. With Er = 300 m,

N = 43, f/h = 1.5 x 10 -6, one obtains the estimate Ev = 120/_ : 0. 1Z ram.

From (37), we obtain Exo , the zero-point error of the coordinate system

on the ground (expected mismatch between the lunar mapping coordinate

system for the whole visible hemisphere and the piece of the coordinate

system represented by the 40-odd control points in the surveyed area):

Exo = (I06/.I. 5) x (0.12 x 10 -3 m) = 80 m.

Other errors. As the effect of £f , the error inu, v (or U , _/ , or

, _ , which are allrpracticaU ¥ the same) due to the error of the focal

length is essentially _g_ , we can see that the focal length may be re-

garded as so accurately known that its error has no effect on the errors of

the final positions.

The largest errors that can be introduced into u or v (or £ and _/ respec-

tively) due to the errors in the orientation elements/O , cr 7" , are

, etc.
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We have the required formulas in (26). The error caused by the error in

i t/'6- /.29
q" cannot exceed -_ _ E r , which is about _ 6z- With n = 30

(which is reasonable) the error caused by "r is less than 1/4 the standard

error of unit weight, i. e. , insignificant.

From (26) and (33), and neglecting _a" in comparison to f2, we see

that the errors in _ and ")7 caused by the uncertainties in /o and 0"

cannot exceed

C/_ = 6_ = 4 e-r

For f/a = 75 ram/60 mm= 1.25, (f/a) z 1. 5, we get from (38)

(38)

6p = 6o- _ 25"ErV_

which would, for 36 target points per frame, produce Ep _ IZ5/_ , a

maximum error Z i/Z times that of the standard error of unit weight. How-

ever, the effect in a final position will be from i/2 to 2/3 of this amount,

as the final positions are obtained from taking the mean of the results

from at least two individual frames.

Remarks about double camera. The formula (38) is derived

from (33), which takes into account the relation of the vehicle

positions to the other variables. We shall now compare this to the

case in which the orientation parameters are known independently,

e. g. , obtained by a double-camera arrangement. In this case,
I

{_,_} <asweU as {P.p} IwouldbegivenbyC_---_fromI31),
which is basically _-2 , so that in this case we would approximately
have

! (38a)

An associated attitude check, involving only a few (say, 15) stars

with a camera identical to that used for the moon surface photo-

graphy would be sufficient to keep the a-/o and Eo- to only a

quarter or so of Er . This makes it apparent that the installing

of a double camera would, conservatively, quadruple the weight

of the final positions. If this factor is compared to the extra

cost which a double camera would add to the total project cost, it

will probably be found well worth the outlay.
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Finally, we come to the influence of an error in - and H on _ By

doing this for _ = 0, i.e., cos@ = 1 and sine : 0, we find from (Z4a)

that ( _ U /__-_ )max = a/Zh, and from this and (34)

/ _ t.t3_- =_- _" = _ _" (39)

However, we now have to redefine exactly what E and what n are. As

we have used formula (34), we have treated the covariance of -_- , H, Z ;

p , _, _, as insignificant, so that 6 should be taken to be E_ , and

n therefore as the number of independent _ and /o that occur on one

plate. With four-fold overlap (Z plates = 1 overlap, etc. ), there would be

five _ andfive /o , sothat n-_10. Takingn = 9, weget 6-_ =0.4Eo- ,

or generally, 6_ = Er if no independent estimates for p , o- , 7- are

obtained from a double camera, then 6 = 6r and n is the number of

target points. We would thus get, for n = 36, for instance, 6z = _ 6r , so

that 6z would have practically no influence on the final accuracy compared

to Er

We may thus summarize our results as follows: The systematic error

of the zero point (i. e., 6_o ) depends critically on the number and accuracy

of the available control points in the area covered. Under the present cir-

cumstances an inaccuracy in the zero point coordinates producing an in-

accuracy of about 80 m in the lunar coordinates with respect to the system

of the reference points ( the "map" system) seems unavoidable.

By way of summary, we have

:For N = 100, _-T = 200 m: E_o

:For N = 40-50, _-v = 300 m: E_o

For N = 40-50, F-_ = 1000 m: _-xo

= 30 m (optimistic)

= 80 m (expected average)

= Z50 m (pessimistic)

The relative accuracy of a target point's coordinates in the tangential

plane to the moon (i. e. , in the system determined by their entirety) is
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mainly limited by the accuracy of the /9 and (_ , while Z , H, Z ,

and '7- contribute only a fraction of the standard deviation of unit weight.

If we assume the average target point to occur and be measured on three

frames, we get Ep_75_ Assuming that 100 H is a more realistic

figure, we see that this corresponds on the ground for the Taback (1964)

figures (h = 50 km, f = 7.5 cm) to an inaccuracy of about 65 m (equation

35) for coordinates in the plane of the horizon, while the inaccuracy of the

altitude, determined by a 45 ° intersection, is about two to three times as

large (2.4 to 2.6 with certain assumptions).

If, however, a double camera is employed for the independent determina-

tion of the attitude parameters ( /v , _r , "1- }, the accuracy is only slightly

worse than that corresponding to _-v so that + 35 m for coordinates in

the horizontal plane and + 90 m for altitude would be the standard deviation.
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APPENDIX B

DETERMINATION OF THE INSTANTANEOUS POLE

AND ASTRONOMICAL LATITUDE ON THE MOON BY

MOON-BASED FIXED CAMERA

A. _TRODUCTION

The exact determination of the terrestrial equatorial coordinates (i. e.,

right ascension and declination proper) of the direction of the instantaneous

axis of rotation of the moon would establish data useful for the orientation of

earth-based lunar photographs, and would also lay the foundation for astronom-

ical selenodesy in terrestrial fashion. Nearly all astronomic geodetic work

(with transits, theodolites, sextants, or other instruments) presumes the

knowledge of sufficiently accurate right ascensions and declinations of a suffi-

cient number of stars, implying the knowledge of the location of the pole of

rotation.

When we speak of right ascensions and declinations in this context, we

have in mind selenocentric right ascensions and declinations, which would be

defined using the kinematic parameters (direction of axis of rotation, node

between lunar equator and ecliptic, or something equivalent thereto) of the

moon as we use those of the earth for defining earth-based right ascension and

declination. If we were able to convert earth-based right ascension and

declination to moon-referred selenocentric right ascension and declination, we

could use them on the moon in the same way for astronomical selenodesy as we

use their terrestrial equivalents for terrestrial navigation. Below is outlined

the theory of a method, together with suggestions for its practical application,

which will permit one to determine (earth centered) right ascension and

declination of the axis of a rotating body in space (as, for instance, the moon)

with any desired accuracy by relatively simple means.

B. THEORY AND METHODS

1. Fixed Camera Star Trails

Suppose we have a camera rigidly connected to a body that rotates in space
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on an axis which always remains parallel to itself, i. e., without anything

like precession or nutation. Suppose, also, that the positions of the stars

in the sky are described by a selenocentric right ascension A and a seleno-

centric declination D which are defined with respect to the body's equator

and a suitably chosen substitute for the vernal equinox, i.e. , zero point of

the right ascension system.

If the celestial coordinates corresponding to the tangential point of the

camera are A and D , and if ---and H are standard coordinates on the plate
O O

oriented with respect to the AD system, the relationship between A, D on the

one hand and - , H on the other hand is given by the well known formulas

cot D sin(A-A o) =

cot D cos(A-A o) =

sinD + H cosD
0 o

cosD - H sinD
0 0

sinD + H cosD
o o

(i)

We now assume that the shutter of the camera is opened at periodic

intervals for a short time, so that images of the stars will be recorded as

such short trails that they cannot be distinguished from points. If the

camera is not moved between successive exposures, all images of the same

star will lie on an ellipse. This would be the same ellipse as the one on which

all stars with the same declination {but different right ascensions) lie. Its

equation is obtained by eliminating A-A from the system (i), for instance by
o

squaring and adding. Thus, one obtains after some manipulation.

_-Z + HZ + .'q--Z'q_c°sD°[(I " HZ) c°s D - ZH sinD ] - c°tZD=0o o (Z)
sin D

or, in somewhat different form

cosZD sinZD sinZD

_ Z + H 2 ( i o) _ H o o)= 0 (Za)
_ sinZ D sin_ D + (I - sinZD'
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From both (Z) and (2a) one can see that, if D
O

point is at the pole, the equation becomes

qT

: _-, i.e., if the tangential

- 2
o

+ H 7 - cot2D = 0 (Zb)

i.e., the images lie on circles with the radius cot D.

If one assumes the usual relationship between measured coordinates,

x, y and standard coordinates -, H, namely

_-= ax + by + c (3)

H =-bx + ay + d

and inserts this into (Z) or (Za) one obtains the equation of the curve on which

all the images lie in terms of certain parameters and the measured coordinates.

We have chosen (3) to be the simplest form possible for the relationship

between the measured and the standard coordinates. Generally, one would

have to consider a much more complicated relationship in order to take care

of the various aberrations of the lens system. In the particular application

under consideration, one may regard the lens aberrations as non-existent,

because they can be carefully calibrated before they are used in the field,

i. e., on the moon. Corrections for the lens aberrations will then be applied

to the measured coordinates.

2. Least Squares Adjustment for Hierarchy of Unknowns

The equations (3) inserted into (2) (or 2a)) will have the following unknowns:

D o, a, b, c, d, which are common to all "traces" on the plate (i.e., all those

series of pictures produced by one and the same star), and D, which is of

course different for every star. This will result in a system of normal

equations that must be solved in steps. Generally, the situation is as follows:
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Suppose we have a system of the type as occurs above, that is, we may

split the unknowns into sets X. so that every equation will contain only
1

elements of one set of unknowns, and a set X, elements of which occur in

every equation.

The normal equations are formed from the observation equations in the

conventional manner. Under the circumstances, we are going to have n sets

of normal equations, which may be written in matrix notation in the following

way

i :ltx1}A i X. i i

= t i

i = l,...,n

(4)

where the meaning of the symbols (all of which represent matrices (including

column matrices, i.e. , vectors)) is clear. Considering that the systems (4)

are normal equations, some simple calculations show that the vector of

unknowns denoted by X, i. e., whose elements occur all throughout the entire

system, is given by

C i - BTI A._'l Bi ) ( /_i - B71 A.1-1 Li)_ (5)X

=I =i

and the individual X. are simply
1

X.=A. -1
i i (L i - B.IX) (5a)

where the X must first have been computed from (5). It is easy to extend this

algorithm to the case where there are more classes of sets of unknowns

which form a hierarchy, such that unknowns of a higher class occur in a

smaller number of equations.
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3. Feasibility of Absolute Declination Determinations

From equation (Zb) it is apparent that the scale of the photographs,
Z

namely a + b Z, and the declination D cannot be separated if the pole of

rotation is the tangential point on the plate. In order to determine the scale

when the tangential point coincides with the pole of the selenocentric declina-

tions, at least one declination must be known, and vice versa. It will be

difficult to separate scale and declination even in the case when pole and

tangential point do not coincide but are close. On the other hand, the

independent determination of scale and absolute selenocentric declinations

is not impossible in the general case. If we consider, for instance a camera

with a field of view of over 90 ° and direct it so that the selenocentric declina-

tion of the tangential point is 45 ° , it will have images of both the equator and

the pole on the plate. The images of equatorial stars and of the pole can

immediately be identified. The pole is projected as a point (or as a circle

with infinitely small radius) and the image of the equator (and of the equator

only) is a straight line. The photograph identifies the distance which cor-

responds to 90o; thus the scale is established. The images of all the

parallels will, of course, be ellipses. By analogy one can thus see that the

determination of absolute selenocentric declinations from photographs is

possible in the fashion indicated. This may be of importance if it is possible

to define the zenith point on a plate very accurately, which is mainly a problem

of adjustment and setup of this instrument, and may not be possible (or

desirable) in the circumstances of a short visit to the moon. It will probably

be more profitable to determine the geocentric right ascension and declina-

tion of the pole of the moon's rotation, and its zenith distance at the place

of observation.

4. General Conditions of the Problem

If a system of normal equations, set up from condition equations of the

type (_a) in connection with B were solved for the unknowns occurring there-

in, we would only get information about the various D and A-A , i. e., we
O

would only establish selenocentric right ascension and declination of various
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stars. In order to find, however, the right ascension and declination of the

body's (moon's) axis of rotation, we would have to establish a relationship

between the attitude parameters of the moon's axis, and terrestrial and

selenocentric right ascension and declination.

A relationship between selenocentric right ascension and declination A

and D, right ascension and declination proper C_ and 0_ , and selenocentric

right ascension and declination of the moon's axis of rotation_ and _is

established as follows:

Suppose x, y,z is the coordinate system associated with right ascension

and declination, so that

X = COS _ cosC_

y = COS 8 sin cX

z=sin 5

and X, Y, Z the coordinate system associated with the selenocentric right

ascension and declination, so that

X = cosDcosA

Y = cosDsinA

Z = sinD

and Z is parallel to the moon's instantaneous axis of rotation. The (XYZ)

system is obtained from the (xyz) system by first rotating by the angle _'_

around the z-axis, and then by the angle I around the new X-axis, where

is the angle between the direction to the vernal equinox _ {i. e. the x-axis)

and the line of intersection between the equatorial planes of moon and earth

{i. e. , the X-axis); and I is the angle (inclination) between the two equatorial
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planes. Thus,

X
Y
7.

= R I(1)R3 (_) Y
z

(6)

(R 1 (R 3) signifying a rotation matrix on the x (z) axis).

coordinates of the Z-axis in the (xyz system in terms of _

I, we obtain

Equating the

,._ and _

cos_ cos ._ = sinIsin/'l

cos_ sin_ = -sinicosl

sinBr = cosl

(7)

from which

I = 90 ° -._, andJ_ =_ - 90 °

Inserting this in (6) and developing, we obtain

cos D cosA =

cos D sinA = sin _ cos

sin D = sin J sinZ

cos 6 sin(c_ - _Y,)

-cos d sin-_ cos( a - _, )

+cos d cos_ cos( c_ - _,)

(8)

In a rigorous adjustment of the measurements, e_ and -_ would be regarded

as unknowns and computed from the system.

We now go back to the original problem. We assume we are making a

number of exposures within a certain interval of time and keep the camera

rigidly connected to the moon. The exposures must be short enough so that
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the images of the stars do not appear elongated. Due to the slow angular

speed of the moon, about 1/30 of that of the earth, the "trace" of a star l0 cm

from the center of rotation reaches a length of only about 15,Z4 during an

exposure lasting for one minute. A one-inch aperture lens would produce

measurable images of sixth magnitude stars on fairly sensitive film during

this interval, a three-inch aperture lens at least eighth magnitude stars.

The time interval between the successive exposure (between the (i-1)st

and the i-th exposure) is _ i' measured in the same units as selenocentric

right ascension, which means that we would have to express _ . in time units
1

based on the rotation period of the moon rather than that of the earth.

If the subscripts k refer to the star, and i to the exposure numbers

respectively (starting with 1, so that _ =" L? ), we obtain from combining

equations (I) and (5):

cos / k [sin( _ k "_)c°s(Ao + Wi )-sin_ cos( k - J_') sin(Ao + _ i ) ] +s in _kCO s._ s in(A ° + ,,_i)

sinO'k sin_ + cos 6" k cos._ cos( cr k -_)

I

I
I
I

I
I
i

I
I

I

cos _k

-- ik

sinD ° + Hik co sDo;

(9)

[sin( C_ k - _.)sin(Ao+ _i)+ sin_cos( _k "J_ )sin(Ao+ 9_ i)3 -sin_kc°s_c°s(Ao+90i)

I
I

i
sin _k sin_ + cos P_k c°s'_c°s(_k "'_)

where we expres___- ik
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= axik + bYik + c •

= -bXik + aYik + dHik i



I

I

I
I
I

I

I

I
I

I
I

I
I

I

I
I
I

I
I

Assume that we have made n exposures and that they have produced

groups of images of m different stars. We then will have Z mn equations, in

the following unknowns: the n - 1 _i, _ -_ A and D • a,b• c, d depend-' ' 0 0

ing on the status of knowledge regarding the cr k and _ k' and the 6¢ k and

_k themselves. It is seen, however• that all the EX occur only in the

combination _r k - _, so that the system (9) is not capable of determining

< "_unless at least some of the cr k are known. This is understandable if one

considers that, as far as the kinematics of the earth go• the zero point of

the right ascension system {the vernal equinox) is completely arbitrary; its

definition is rather given dynamically and involves the earth's orbit. If no

right ascensions are known, one can put arbitrarily _-_ = 0 and count the

right ascensions from _-_.

5. Approaches to Solutions of the Equations

The reduction could proceed in several ways, depending on the amount

of knowledge one has concerning the c_ k and d k. {We must have approxi-

mate values for all unknowns since the system is non-linear, and we shall

discuss later how these may be obtained. )

and O" occur only in those equations that are generated from the_" k k

measurements of the star with number k; there will normally be Zn of these.

All these equations will also contain one _P i and those unknowns that are

common to the whole plate. According to the procedure described around

the formulas (4), (5) and (5a) we can eliminate the _ k and _k and end up

with a system in which occur only the _ i' and the unknowns common to the

entire plate. Using the same procedure, we can eliminate the_i from this

system {as all of the resulting equations will contain only one _ i but all the

other unknowns) and arrive at a system which contains only those unknowns

that occur in every equation. We solve for these unknowns, and by substi-

tutingtheir values back can solve for the _i and get the _r k and 6' k as the

last step.

The situation is more complicated if previous estimates for the 6r k and
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and their variances are available. This is the case in practice, as the_k

right ascensions and declinations of all stars whose images will appear on

the photograph can be taken from one or more catalogues; in the case of a

lunar application, where mainly bright stars are involved, very accurate

positions will be available for them, some even from the FK4. As a matter

of fact, a photograph of the prospective dimensions could yield positions of

such low accuracy (i. e., with standard deviation of well over Z") that one

could introduce the positions into the calculations simply as known parameters,

to whose improvement the observations at hand cannot contribute. This will

simplify the reductions of observations made on the moon.

In 1955, D. Brown developed an algorithm for making least squares

solutions in the case where the observations are correlated and when any

number of observations may occur in an equation of condition. (Ballistic

Research Laboratory at Aberdeen, Report #934). If one regards the available

kc and _¢kc and their standard deviations (whichcatalogue positions are,

of course, fairly accurately known) as a set of observations with a given

covariance matrix, and if the final values of these coordinates O_k and _ k

are also carried as unknowns, we can add the equations of condition.

kc C_"k O, _kc _f'k 0 k = 1,...,m {I0)

to the set of equations of conditions provided by (9) and regard the set of (9)

and (I0) as the equations of condition of the system; Brown's algorithm can

then be applied straightforwardly.

The necessary initial values for the unknowns can be obtained as follows:

Regarding only the images produced by the ith exposure at a time, we

can, in the manner which is standard in photographic astrometry, determine

coordinates of the tangential "point and establish a relationship between-- ik

Hik on the one hand and Xik and Yik on the other hand, getting independent

sets of a i, b i, c i, di. Z (A:.za check,z b.Z°ne should verify that to a very high degree=a. + .)
of approximation a i + i J 3
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Close to the pole (which should be close to the center of the plate for

practical applications), the coordinates of the images of the same star lie on

circles, the center of which is a point with the coordinates x o, Yo" Taking

two exposures (1 and 2) of two stars (1 and 7), we have thus

I
X2k = (Xlk

I Y2k =-(Xlk

- Xo) cos _ + (Ylk -

- Xo) sin _ + (Ylk -

yo ) sin ¢

yo) cos
k=l,2

I
I
I

I
I

From these (four) equations, x o, Yo and _ can be computed.

From x and Yo one gets ---- and H and from these _ and-_ whileO O O' '

_F results from the calculation above. A and D are now also known, because
O O

their -- and H are byproducts of the first (single exposure) adjustments, so

that their g and o4" is known, and from these and the just obtained J_ and
O O

J_ system (8) will permit one to obtain D and A In this (or an equivalent)' 0 O"

way, one can obtain fairly good first approximations to the unknowns which

are necessary for a least squares calculation with non-linear equations.

I
I

I

I
I
I

6. Estimation of Accuracy of the Pole's Coordinates Determination

A rigorous approach would be to start from equations (9) and (I0) and to

set up the normal equations for a model star distribution and a model exposure

pattern, and invert these equations under conditions that are as general as

possible, so that the variances of _and_" become known as functions of the

circumstances of the exposure. This would be analogous to the way in which

Eichhorn and Williams (Astr. Journ. May 1963) treated the question of the

accuracy of astrometric positions. If a solution in this way is attempted, one

eventually comes to tremendously complicated formulas which are difficult to

keep track of. However, we can show that one can heuristically arrive at the

minimum accuracy without going through the tremendously complicated model

calculations in the general case.
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Determination of the accuracy is analogous (in a vastly simplified but

basically equivalent case) to the determination of the accuracy of the center

of a circle, determined from short arcs (all of which have th@ same center)

by drawing radii which are perpendicular to the end points of the arc. (Points

in between contribute less to the total weight. ) If the arc is 1/n radians long

as shown below, and the position of the end points has a standard deviation of

, the width of the "standard deviation pencil" at the center will be _t6. If

the radius through the ends is combined with another one belonging to a star

with an A (right ascension) about 90 ° different, the point : _ , _ will be

determined and its coordinates will have standard deviations of _n d-. A

combination of 23/2 2n pairs of images will therefore be needed to determine

the coordinates of the pole of the

iiiiiii_::_i:_:_::::_ii_i:_i_!iiiiiii!ii

\ /
\ /

selenocentric coordinates with

standard coordinates with a standard

deviation of _. If N stars are avail-

able, the standard coordinates will

be determined with standard devia-

tions 6_ given by

N g

In a lunar experiment, the two extreme exposures would be 1Zh apart,

having then described the arc of_ 0.1 radians so that n _ 10. Therefore,

300 star pairs, which are easily obtainable on a camera with a field radius of

15 °, 1m exposure with a Z or 3-inch aperture lens, will determine the pole

of the moon's rotation as accurately as the star positions can be measured.

Assuming that a focal length of 1000 mm yields star positions of 1" accuracy,

a camera with a focal length of r millimeters (a field 15 ° wide and a Z to 3-

inch aperture lens) will enable one to determine the geographic latitude of the

station on the moon with an accuracy of at least 1000 seconds of arc. A
r

150 mm focal length camera (with the other postulated characteristics)

would, therefore, from only two exposures 12 h apart yield a latitude accuracy

of at the worst 7-, which is probably much better than what one could do with
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a theodolite. The other advantage is that the only equipment needed is a

firmly established calibrated camera; accuracy of the timing of the exposures

is quite immaterial.

From the discussion above, it is shown how the accuracy of _and

(and thus the selenographic latitude) is obtained from cameras with other

characteristics. Note that the mi.'nimum accuracy from a very simplified

model has been discussed which, however, is essentially the same (for our

purposes) as the exact one.

7. Setup of the Camera

The foregoing analysis is valid only if the relative position of the camera

with respect to *.he moon is the same for all exposures. This can most easily

be accomplished by not allowing the camera to be moved or touched through-

out the whole experiment. However, it may not be possible to adhere to this

requirement. If the camera has to be moved between exposures, one must

make sure that there are provisions to rectify the various exposures with

respect to each other. A portion of the lunar landscape, that appears on the

lower edge of the plates, could be used as an extended series of fiducial marks

and serve this purpose adequately, as long as it is clear which image of the

horizon goes with what star exposure.

The camera must point in the direction of the lunar celestial pole, which

is sufficiently well know for this purpose. If the experiment is to yield not

only the exact location of the lunar pole, but also the selenographic latitude

of the observing station, the camera must be carefully leveled and its scale

well known, so that the actual latitude, i. e., the angular distance of the pole

from the horizon, can be computed from the measurements on the plate. An

artificial mark {balloon) close to the horizon would serve this purpose very

adequately.
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APPENDIX C

OBSERVATIONS FROM THE MOON OF THE EARTH'S POSITION

AGAINST THE BACKGROUND OF STARS FOR SELENODETIC PURPOSES

A. INTRODUCTION

There are two possibilities, neither of which look very promising,

of making observations of the Earth from the Moon to obtain selenodetic

data. These are:

{1) Occultations of stars by the Earth.

{2) Position of Earth referred to the surrounding star field, with

a technique analogous to the Markowitz Dual-Rate Moon Camera {Ref. 1),

or straight photographs {or other recorded image) with an instrument of

sufficiently long focus.

B. OCCULTATIONS OF STARS BY THE EARTH

It appears that the Earth's atmosphere will prevent occultation

observations from being accurate enough to be useful for selenodetic

purposes. Analysis follows.

The limb of the earth that covers or uncovers a particular star will

be either cloudy or clear. If the limb is cloudy, it will be difficult to

determine the effective radius of the earth R_ + h, where R_ is the radius

of the Earth for the latitude of the point on the limb where the star is

covered {or uncovered), and h is the height of the top of cloud layer. R_

can be calculated with an accuracy of + 30 meters {= uncertainty of the

radius and of the geoid height); but the uncertainty of h could be 15 km in

an extreme case.

It is possible that a large number of occultations could be observed

and their positions and times fitted to a moving ellipse representing

the outline of the solid Earth. Occultations occurring in cloudy regions
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would show large residuals, all in the sense of R_ + h > K_. The
large residuals in cloudy regions would tend to be grouped in a non-

random way, and such non-random large positive residuals could be re-

jected according to some rule. This procedure would lead to a selection
of occultation observations made at points where the limb is clear, which,

however, would not get around a different set of difficulties presented

by a clear limb.

Occultations by a clear limb would be subject to large uncertainties

arising from refraction and extinction. The horizontal refraction at

sea level is approximately 30'-37', but is subject to large variations

(up to another 30' under unusual atmospheric conditions producing

mirages, looming, etc. ). Even under normal conditions the uncer-

tainty is _Z'. The amount of both the refraction itself and its un-

certainty are sensitive functions of temperature and pressure along the
path, (which for practical reasons cannot be measured with sufficient

accuracy. These quantities would be doubled for a ray from a star

grazing the Earth's surface. (Ref. 2.)

Extinction in visible wavelengths in clear air is _-- 0.3 magni-

tude/atmosphere, or a little greater; but this quantity is quite variable,

and depends on the haze and aerosol content of the atmosphere along

the path. If one takes the density scale height of the atmosphere to be

approximately 10 kin, then a horizontal line of sight passes through

about 3.8 atmospheres for a terrestrial observer, anda grazing ray

passes through about 7. Z atmospheres for an extraterrestrial observer.

The total extinction would thus be at least Z. Z magnitudes, which re-

presents a reduction by a factor of about 8 in brightness.

A star sinking through the atmosphere and getting fainter (or

one emerging and getting brighter) could thus present the observer

with a problem as to when exactly it disappears (or appears), quite

apart from the erratic effect caused by clouds.
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Corrections for refraction and extinction are affected by the

height of the geographical horizon that constitutes the occulting limb,

e. g., by a mountain range or a plateau. Refraction in an air path over

a range and a plateau, even when they are the same height, tends to

behave differently in the two cases. (These refraction uncertainties

are_of course over and above the uncertainties of the skyline itself, which

could probably be handled, since the contour of any given cross section

of the Earth is quite well known. )

Conclusion: Occultation observations would be subject to un-

certainties of about + 4' or + 200" under the very best conditions, and

at least half the time would be a great deal worse. This error corres-

ponds to nearly 400 km on the surface of the Moon. To be better

than already exists (say, +__ 800 m), the Earth's position against the

stars would have to be measured with an angular error not exceeding

+ 800 m/4xl05 km or 0.2x10 -5 radian, or about 0. "4. If the occulta-

tion errors (+ 200" per observation) were randomly distributed

250,000 observations would be required to reduce the overall un-

certainty to + 0. "4. This is not practicable.

C. MOON CAMERA TECHNIQUE APPLIED TO THE EARTH FROM

THE MOON

Direct imaging of the Earth against a star field in a telescope, with-

out a Moon Camera attachment, will not be discussed separately, because

anything that can be achieved in this way can be achieved better with a

Moon Camera. Conclusions about the use of Moon Camera apply a

fortiori to the use of telescopes without the camera.

The Dual-Rate Moon Camera (Ref. 1) was developed by Wm.

Markowitz, Chief of the Time Service, U. S. Naval Observatory,

to obtain precise observations of the position of the Moon against the

stars for time determinations (using the orbital motion of the Moon

as a clock), and for determination of the geocentric position of the
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observer. It is attached to a telescope of focal length long enough to

give an image of adequate scale. The telescope is driven at the

sidereal rate. The camera is essentially a plateholder with light

yellow filter, which holds a plate on which images of stars formed

by the telescope objective are photographed with exposures of some

seconds or minutes, if need be. (Actual exposures are 10-25 seconds

on 103 G emulsion with a refractor of 12 inches aperture and 180 inches

focal length. ) It also contains a plane-parallel neutral filter rotating

in such a way as to hold the image of the Moon stationary against the

starfield. The filter cuts the light by a factor of 1000, so that the

Moon will be correctly exposed in the 10-25 seconds required for the

starfield. The time is recorded at that instant when the plane of the

rotating neutral filter is parallel to the plane of the stationary yellow

filter. The errors from all sources from a single night's run (several

exposures) are of the order of + 0."15 in right ascension and some-

what less in declination. This corresponds to an uncertainty in geo-

centric position of + 280 m. If the same kind of observations could

be made of the Earth from the Moon, the same error in selenocentric

coordinates would presumably result.

On the face of it, an uncertainty of +Z80 m. represents a con-

siderable reduction of the present uncertainty, and would be worth

trying to attain. There are, however, difficulties, such as the

following:

(1) These results are obtained with a telescope with aperture of

30 cm and focal length of nearly 5 m, with an equatorially aligned

sidereal drive. This is a rather large and complicated instrument to

take to the Moon and set up there.

(Z) One could substitute a smaller instrument, with corresponding

decrease in focal length f and increase in error, = 0."15 x 5/f (meters) =

O. "75/f (meters).
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(B) One could dispense with the equatorial mount and sidereal drive,

on the grounds that the slow rotation of the Moon would not require it. The

rotation rate of the Moon is about 0. "54/sec. With exposures of l0 or more

seconds, and with the Earth at low (selenocentric) declination, stars would

trail 5" or more, which is 0.12 mm (if f= 5 m), which is rather large.

Furthermore, the number of usable reference stars would be diminished,

because stars within a magnitude or so of the useful limit with normal

photography (in which a sidereal drive is used) would not leave a usable

trail.

(4) To save weight, one could conceivably dispense with the tele-

scope tube, but the plateholder would of course have to be shaded from

sunlight, both direct and reflected from the surrounding terrain. With-

out a tube, there would be difficulty in maintaining alignment to the

requisite precision with an open-work mount for the objective lens.

(5) Unlike the Moon, the Earth's limb (as noted above) is fuzzy

and subject to uncertainties due to irregularities of cloud cover height,

and would be impossible to measure against the background of reference

stars with the same precision possible in the case of lunar photographs.

Terrestrial landmarks visible (or, rather, photographable) from

the Moon might provide sharp enough points to measure, but this is quite

dubious. If nsuch points on the Earth could be identified, the geocentric

coordinates of the object actually being set on with the hairline of the

measuring engine would have to be known with an error of about
1/2

+ _n , where _ is the error being aimed at for the coordinates

of the observing station on the Moon. If we take _ = Z00 m as being

worth while, and if n = 100, then the quality of the image of the Earth,

and its resolution, must be good enough that the exact terrestrial land-

mark can be identified with sufficient certainty to locate it within

÷ Z krn. This sounds fairly easy, but it is not. It should be remem-

bered that: (1) a 30-cm aperture has a resolving power of about +

0. "4 (0.8 krn at the distance of the Moon); (2) there are not many
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landmarks that offer sufficient contrast with their surroundings to locate

within 2 krn on photographs taken through the Earth's atmosphere, if the

TIROS-NIMBUS photographs are any indication. Very small islands,

or the tips of sharp promontories or fjords, are perhaps the most

promising type of landmark.

Conclusion: It appears that any one of the above-mentioned

difficulties makes this method marginal, and that the combination of

them all is sufficient grounds for eliminating further consideration of

the method at this time. This is not to say that it will never be use-

ful: it may become useful at such a time as one can afford to devote

several hundred pounds of precious payload to such highly specialized

equipment.
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APPENDIX D

FORMULAS FOR REDUCTION OF PANORAMIC

PHOTOGRAPHY TO DETERMINE ASTRONOMICAL

POSITION AND AZIMUTH, AND SELENOCENTILIC

COORDINATES OF SURVEY TARGETS

A. INTRODUCTION

The panoramic camera recommended in this report provides a means

of obtaining astronomical position and orientation, and angular relationships

for surveying, with the minimum demands upon astronaut for time and

specialized training.

The following paragraphs provide a brief error analysis of the expected

capabilities of this photography and a derivation of formulas that may be used

in reducing the photo observations.

B. PRELIMINARY ANALYSIS

Assume that a panoramic camera with characteristics as proposed in

Appendix E with angular accuracy of 10" for each component of plate measure-

ment is leveled and N photographs obtained of about 50 stars symmetrically

distributed around the horizon. For the following discussion, assume plate

coordinates can be converted to azimuths and zenith distance angles. Then

the following equations may be used to make differential corrections to an

assumed astronomical position of the camera.

d_

{a)

(b)

These expressions are developed by differentiating the law of cosines

and the relationship between three sides and two angles of the astronomical

triangleAPS, and simplifying. As shown in Figure 1, A is theassumedposi-

tion of the camera, P is the pole of the moon, S is the substellar projection of

a star on the celestial sphere, c< and/_ are the computed values of azimuth
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and zenith distance for the assumed position A, 4* is the assumed latitude,

_0 is the difference of longitudes of the camera and star, and D is the declina-

tion of the star, with reference to the moon's equator.

We observe that for the panoramic camera, the zenith distance is near

90 °, and the sin j8 in the denominator will cause no difficulty. Equation (a)

shows that the East-West stars most effectively determine longitude, and

North-South stars most effectively determine latitude, as is intuitively

evident. The azimuth equation (b) shows that azimuth measurements will be

valueless for position determination for landing sites near the equator except

for stars near the upper edge of the photographed star field. However, plate

scale is effectively measured by azimuth, as will be subsequently discussed.

1. Astronomical Position.

The estimated error for astronomical latitude and longitude is given by
n_. iOt'

where n is the number of stars (images on the plate), since each star

contributes one degree of freedom to the system of equations. The error in

the vertical scaling of the plate is assumed to be 10 '_. With 4 photographs and

50 stars per photograph, the error is 1'_.

A realistic position uncertainty, however, must take into account the

standard error associated with the lunar pole. By taking 1Z hour time lapse

photographs of the polar star field on a single mission with a 150 mm lens of

2 or 3-inch aperture, this error will amount to (1000/150)_7" (See AppendixB).

This is the controlling error. The total error of astronomical position will

initially be 7" or about 60 m as measured on the lunar surface. As additional

pole determinations are made on subsequent missions the position of the pole

will become refined and the error will be reduced. Eventually, it should be

possible to determine the physical librations of the moon as well, and cal-

culate the position of the lunar pole at any time with the same sort of accuracy

as is possible for the earth's pole now. At any stage of this improvement in

knowledge of the instantaneous position of the moon's pole, the astronomical

position of the camera can be revised.
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_. Astronomical Azimuths and Zenith Distances.

If astronomical azimuth and zenith distances can be scaled to 10" in a

single photograph, the azimuths and zenith distances to the same object in

N photographs would be in error due to plate scaling errors by 10" / _-N. To

this must be added the transverse error of the pole or 7 'f, so the total errors

in azimuth and in zenith distance will be _ Ioo 5-0 _ 10"+ . For laying out

a local triangulation netw_qrk, estimates of angular measurement uncertainty
• . _d Z i0" ,, .

between two objects is _-_" _lO , slnce the pole error will cause a system-

atic error in the orientation of the whole network and will not affect angular

relationships between stations of the net.

C. DERIVATION OF EQUATIONS

1. Astronomical Position.

We start with the notion of two coordinate systems fixed with relation

to the stars. A, B, C, are fixed in the moon with C parallel to the instan-

taneous rotation axis of the moon. A is parallel to the line from the center of

the reference surface to the point on the lunar surface where the ecliptic

crosses the equator of date. Bcornpletes the right handed triad. An auxiliary

coordinate system (1, _rn, n) is the other fixed coordinate system, with

1 in the direction of the star at the instant of exposure. Related to these two

fixed coordinate systems are the topographic {gravity) axes (__,__, __) at the

camera station, the camera axes (_,__, _) fixed in the camera and moon-

centered axes (_U,V,_M/) rotating with the moon. Diagrams of the angular

relationships connecting the various coordinate systems, a glossary of

symbols and definitions of these symbols will be found in Attatchment 1.

As the optical axis of the panoramic camera rotates, it intersects the

cylindrical film in a line which may be called the principal line of the plate.

The principal point on the film may be defined as the point on the principal
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line where the camera has completed half of its rotation, and the epoch o£

the plate may be defined as the time at which the optical axis passes through

the principal point. (See Figure 2. )

The relations between plate variables, the direction of the star and

the camera axes are given by:

v ,o [
(1)

In the determination of astronomical position by" means of differential

corrections, the folIowing reiations are useful and are derived in Attach-

ment 2.

a__ : -< o /,r_

I -K2 -I_"3 o
L -J

o J( o L, L_

= = -L, 0

[¢-
4

Differ entiating (I) and utilizing (2), the following ob s er vation equations

result

(z)

dr= adf+ fda-- adf + f {sinbK 2 - cos bK 3 + L.I}

du = cot b df - cscZbf db - cot b df - cscZbf { sin a L Z + cos a L 3

(3)

+ KI}

From which the following results are useful later as a check. The K's

and L's are scalars the form of which is to be determined.

da - -sin b K 2 - cos b K 3 + L 1

db -- sin a L 2 + cos a L 3 + K 1

(4)
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I I 07 {000]Writing E 1- 00 , ET. = 00 , andE 3- 001
00 00 0-1 0

I the following relations will be applied to determine the L's and the K's. An

example of the derivation of one of them is included in Attachment 2.

1-

From the definitions of the relations between coordinate systems the

following equations apply :

r

[ ,rPif-,,-/_+_J,,;>;(s),<__._c:

r _]'r rL¢ f : E,"/2_-,.')_,"_,-,,-_,)R',"O,,-,--,,,)a"_',,/,-+je;_'_+<.,)eZ/eJ) e.c_]
It is convenient to define:

pT

PII

= PI2-

P
13

P2-1 P31

PZZ P3Z

PZ3 P33

' 7"

D-5
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T
(6a)

(6b)



Differentiating 6(a) and using 5 and 7.

!"[(
I

][
and differentiating 6 (b) and using 5 and 7

[ ]'{-
030

-.s,'n,,E._d'y-.,°rEa-Fd'+('/n¢SrE-,,_-cos¢£rE_.F)d_+T " E,T_T _/'] [__, __, _1

Also if R is any unitary rotation matrix whatever, then we observe

that:

IP2_ 0 -_a,

-Q_ %, O

0 l_,_-R..

-_,_ 0 SB,

_ -_, 0

Equating corresponding elements of Z and 9 and noting that P33 = 0

TT

2ed:=O

D-6
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(I0)

The above equations satisfy (4). By setting gl = gz = "7'dg 1

d_ = dt = 0 thena = a , b =flandK 1 andK Z are (a) and (b) which is

another check of these equations.

= dg Z =

One further simplification is possible. It is well known that matrix

multiplication is not commutative. Specifically, except in special cases,

The order in taking the misleveling angles gl and gz is purely one

of definition. The angles gland gz are expected to be small -_ 30". Approxi-

mating cos g = 1, sin g = fig rads and assuming _gl _ gz = 0 (actuallySg 1 _ gz

_- 0". 01), then the equality sign in (A) holds. Making this approximation and

solving K Z for da, K 1 for db, simplifying, and substituting in 3, then the

observation equations are:

f
({-o_=

+ cos _,_)] # 8

where (c-o) stands for computed minus observed.
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Of the nine differentials:

d_ and d_) are corrections to the assumed astronomical latitude and

longitude of the camera.

d 7 is similar to the familiar rotation term (Z} in the classical vari-

ation of coordinates solution of geodesy.

dg I and dg Z are corrections to the misleveling angles gl and gz" If

these terms in dg 1 and dg Z are included in the solution, then two additional

equations

dg I = kl,and dg Z = k Z

should be adjoined to system. The values of the k's correspond to the observed

values of gl and gzon the level vials. The terms in dg 1 and dg 2 should be

removed, if it is not desired to adjust the bubble angles.

28
9--_- is the angular rate of rotation of the moon. dt is the correction

to the observed epoch of the plate. If dt is included in the solution an addition-

al equation, dt = c, with c corresponding to the observed epoch of the plate, is

added to the system of equations. The terms in dt should be removed from the

solution if it is not desired to adjust the epoch of the plate. The terms in dt

can be used in a different way. Suppose the positions of the stars in the lunar

equatorial system of coordinates have been determined for the epoch of the

plate but not for the instant of exposure of the individual star, then the terms

in dt may be considered a correction to the star position due to the finite time

of rotation of the camera. Therefore, dt will be the time difference between

the plate epoch and the exposure of the star. In this case, the terms in dt

should be evaluated and used to reduce the residuals.

da and db are corrections to the camera angles. They are the values

of the terms in brackets in the corresponding equations.
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The coefficients of d_ and dt in the (15a) equation are small.

Therefore, this equation serves to determine df and d_.

df corresponds to either a uniform change in the focal distance or to a

uniform shrinkage of the film.

2. Astronomical Azimuths and Zenith Distances

Plate angles a and b from equations are given as

a=vlf

b= cot-1 [ u/#]

The vector _ = sin a sin b :k + cos a sin b/_

centric coordinate system, but
r r

Therefore equating components of Z

co_-_ _;,-,,_' = _,

and

Q2t

_ 1fl -- ÷_-, -i- Q_,)
Q3,

m 4

+ cos b_) in thetopo-

The above equations may be used to compute the preliminary and final

astronomical azimuths and zenith distances. For simulation purposes, the

panoramic camera and the methods of data reduction outlined here may be

used with earth-based photography to test its effectiveness. Results of high

precision should not be expected due to the high variability of vertical refrac-

tion. One of the standard methods of computing vertical refraction must be

employed and the residuals reduced accordingly. On the assumption that the

computed vertical refraction is in error by about the same amount for all

lines radiating from the camera to the stars, a term - f Ab withAb being the

correction to the computed refraction could be added to the right hand side

of the ( 1 lb) equations.
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3. Selenocentric Coordinates

A short summary of the methods by means of which selenocentric and

selenodetic coordinates of survey points may be determined given the

coordinates of an origin on the surface of the moon and enough other observed

quantities will be outlined without writing the equations out in full.

Another set of coordinate axes is necessary which will be near but not

usually coincident with the astronomically oriented topographic coordinate

system (_ , /_ , $ ). Designate the local selenodetic system by'( A , /_ , _1

The differences in coordinate systems are due to the deflections of the

vertical. Corresponding angles in the two systems are distinguished by bars

over the astronomical angles. The base vectors 1, m, n defined in the

glossary are not fixed with regard to the stars.

.

Since

T

E -] _[_ ]_i,,-_,3 u v.__

E]
(1Z)

Since _ = sin 0( sin/3 h+ cos o( sin/__+ cos/5

Equating components of__ and solving for o_ and /9 we have

-I

O< = +or_ j--5,,_ a) U,, + cos _ U_,
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-¢

/C7 = _on

Rectangular space coordinates. The following equations have been

taken from ( 1 ) with obvious modifications due to the difference in base

surfaces, e.g., a sphere instead of a spheroid.

The trans formation and inver s e tr ans formation between r e ctangular

space coordinates and selenodetic coordinates are:

U=(;P * h) ¢o_q_ cos _o = t-oo-_[V]

qb=/_°n-'[ fO*A/ ],.V_) "A

h :C'U%V,÷W ,)'___

(13)

If (a, b, c) are the components of the unit vector L in the direction of

the line from the camera at point (U 1' VI' W1) to point (U Z' VZ' WZ) and s

is the length of the line where the subscripts refer to quantities associated

with points 1 and Z respectively. (See Figure 3. )

(U_- u,)= _,

(v:-v,)=_b

(W_-w,)=,_

(14)

The angles OC,_ and the length s follow from

(15)
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S COSI_ I

=+,++4_[+,,,+...+,+i,-,,+,++o++++o+++,+o.+._'+,.-+,)I-(+++,}

The azimuth and zenith distance of the prolongation of the same line

at PZ are obtained by interchanging the subscripted quantities Z_,I and

changing the sign of s since the length will now be measured in the direction

opposite to __ . The back azimuth is now ( o_ Z + 180°) and the back zenith

distances is (180 ° -/gZ). Hence, given the selenodetic coordinates of two

points, we may directly determine the selenodetic length, azimuth, and

zenith distance and back azimuth and back zenith distance of the straight

line joining them. (See Figure 3. )

(15)

The inverse problem of finding the coordinates of point Z given the

coordinates of point 1 and the azimuth, zenith distance and length of the line

between them may be determined from the following equations:

(16)

_nd _ (13).

The side lengths of triangulation proceeding from a known base line

may be computed from the law of sines, the known base line length and the

following. Note that the triangulation is composed of plane triangles in space,

and does not refer to triangles on the surface of a sphere.
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If a, b and _, b are plate angles for two images on the plate and

if I is the angle included between them, then

cos I = cos b cos b + sinb sinb cos (a - a).

Variation of coordinates. The equations relating changes in plate

coordinates with changes in the end coordinates of two ends of the ob-

served line may be easily obtained, but are not included here because of

their lengthy derivations. Reference is made to [/][3] which solves

the problem for ordinary geodetic triangulation on earth. The object is

to develop expressions for da and db for substitution in (3). This can

be done by developing two different expressions for (dl , din, dn) and

equating the two, one from (12) and the other starting from(14_ Note that
-1-

{dl, din, dn) _ {O, O, O) T in general. The (dl, din, dr_ from(14)

can either be in terms of differential corrections to rectangular coordi-

nates [(dU1, dV 1, d_a/1) (dLJz, d_/z, dWz)]or to selenodetic coordi-

nates I(d_bl' d_Jl' dhl) (dgb2' d_)2' dh2)] provided allowance is made

for the non-parallelism of (_ 1' _Z ) (/ul' /z_ Z) and (_) 1' _] Z )"

Change of the Selenodetic Coordinate System. It can be expected that

the initial selenodetic coordinate system employed will undergo changes.

These changes may be composed of (1) a translation in space of the origin

of the coordinate system to better coincide with the center of mass of the

moon; (Z) rotations about the U, V, W axes to make the W axis parallel to

the instantaneous rotation axis of the moon; and (3) changes in the size and

shape of the base surface {sphere) into a spheroid say. Should these prob-

lems arise reference is made to [3J , page 13.
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APPENDIX - Attachment 1

GLOSSARY

A, B, C, are an orthonormal set of unit vectors in order (1, Z,

fixed with respect to the stars. C is parallel to the

instantaneous rotation axis of the moon. A is in the

direction of the intersection of the ecliptic with the

equator of date of the moon. B__ completes the triad.

3)

1, m, n

¢____,_, _

are an auxiliary orthonormal set of unit vectors in

order (1, Z, 3) fixed with respect to the stars. 1 points

in the direction of a particular star, and is by definition

in the direction given by plate angles a and b with res-

pect to the camera axes _ , _ , q . rn is in the

direction given by plate angles a and (90 ° + b). n is in

the direction (a - 90 ° ) and b = 90 ° with respect to the

camera axes ._[_,._, J7•

are an orthonormal set of base vectors in order (1, 2, 3)

fixed in the camera. _ is parallel to the rotation axis

of the camera. _ is in the direction of the optical axis

of the camera when it has completed half of its rotation.

A completes the triad.

a is the horizontal camera angle, the dihedral angle

between the planes defined by { _, _ ) and (Z, ..__)

and is positive from _ towards i"

b is the vertical camera angle between the vectors

and-1 positive from r] toward the plane of ___ and ____.

*Note vectors are denoted by underlining.
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U, V,
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gl

g2

7

¢

m

6b

W

is the misleveling angle obtained from the leveling

vial in the plane of _ and @ , positive in the sense

of rotation of _ into

is the misleveling angle obtained from the second

leveling vial which is assumed to be in the plane of

_7 and _ . It is positive in the sense of rotation of

___ into

is the rotation angle in the plane of _ and /_ corres-

ponding to the azimuth of the axis which has been

reoriented by the misleveling angles gl and g2"

are an orthonormal set of unit vectors at a point on the

surface of the moon. _ is in the direction of the local

gravity vector. /_ is in the plane of(T_r , and 0 )and

points toward astronomical north. _ completes the

triad and points in the direction of local astronomical

east. (These definitions may not be in harmony with

the usual astronomical convention regarding the moon. }

is astronomical latitude, the angle between the plane of

(U___and V} and _ measured from the plane of (U and V}

toward 0___. It is positive in the northern hemisphere

and negative in the southern hemisphere.

is the astronomical longitude of the camera, the dihedral

angle between the planes of(U, V) (_-,W}. It is

positive in the sense of rotation of the moon about its

axis.

are an orthonormal set of unit vectors in order (1, 2, B).

Wis parallel to the instantaneous rotation axis of the

moon. __Uis parallel to the line joining the center of

the reference surface and the (0, O) point on the moon's

surface. W completes the triad. U, V, Wrotate with

the moon.



i, m, n

)k, /_, 9

h

¢

cO

o<

m

D-Z0

is the dihedral angle between the planes of CA, C) and

(U, W) at the epoch of the plate.

are an orthonormal set of unit vectors in order (1, 2, 3)

defined similarly to 1, m, n with respect to {" , _ , /7,

except that 1, m, n are not fixed relative to the stars

and thatl points towards a landmark or survey signal.

are an orthonormal set of unit vectors at point P which

is at a height h above the reference surface (sphere).

1) , _ , /J are respectively parallel to the normal to

the base surface, the tangent vector to the parallels,

and the tangent vector to the meridians at the point m'

on the base sphere directly under the point P.

is the height above or below the base sphere.

is the selenodetic latitude, the angle between the plane

of the moon's equator and the position vector of a

point. It is measured from the plane of the moon's

equator towards the pole. It is positive in the northern

hemisphere and negative in the southern hemisphere.

is the selenodetic longitude, the dihedral angle between

the planes defined by (U, V) and (V_._, W_). It is positive

towards the east. (This may be different from the

standard astronomical convention. )

is the astronomical azimuth, the dihedral angle between

the planes defined by (Q , W ) and (¢ , _ ), and is

measured clockwise from astronomical north.

is the astronomical zenith distance, the angle between

the vectors 9- and'l. It is positive from -_ towards 1.
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cX is the selenodetic azimuth, the dihedral angle between

the planes definedby(jQ_, W) and ( Q , 1). It is

measured clockwise from selenodetic north.

is the selenodetic zenith distance, the angle between

the vectors _ and 1. It is positive from Q towards 1.
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APPENDIX D - Attachment Z

1. The Skew Symmetry of the Coefficient Matrices

As sum e

. : _'m r l ]
cll ], k11 klz k13i --I] _ !Iii 121 131

: , _ !a!l 13z[
/

£_._

It will be sufficient to prove that the matrix of k..'s is skew symmetric
xj

since the proof for the matrix of 1..'s is exactly similar.
13

To determine the k's and l's we have the following relationships

P.,

i'i = 1 i =mxn

m'm= 1 m= n xl

n.n= 1 n =ixm

Differentiating the above

,

_-di =0

m" drTa--0

n-d_ = 0

dl = dmxn +mxdn

drn = dnxi +nxdi

d_ = dixm +ixdr_

From (I) and (3)

i_'d_ = kll = 0

ffa'dffa = k22 = 0

_'dl_ = k33 = 0

dl*m =

dm'l =

.'. kp. 1

k12

kzl = (d_nxi + _x cli)'i

= -klp.

_nx dl'__I=i xn'cli = -m'di = -kip .
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dl-n = k13

dnol = k31 =cll.......x m-i + ixdm-I =mxi'di = -n'dl= -kI3

.'. k31 = -k13

drn-n = kz3

cln" m = k3z = d!_ x m'm +ixdm'm=__xi'dn_ = -__-dn_ = -kz3

• k32 = -kz3

2. Example of Differentiation of base vectors

[-sinl _ cos _J ]
= i-sindcos tO -sindsin _) cosd

cosdcos _) cos6sin _0 sin6
i
t.

u

V )

_,_1
_7_ o
__ I_ -cos_cos

_---_-" -sin_cos _)
__

o 0]

-cosdsin_ -sin_ I

-sin_sin m cos_

u

V

W

0

-COS_COS a.%
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APPENDIX E

PROPOSED CAMERA CHARACTERISTICS FOR SURFACE

SELENODETIC OP ERATIONS

A. INTRODUCTION

Selenodetic measurements proposed under this study are based

largely on the use of photographic observing techniques to:

° Photograph the circumpolar stars to determine the instan-

taneous pole.

Zo Photograph the CSM against the star field to determine the

position of the LEM landing site with relation to the CSM

orbit.

, Photograph near-horizon stars to determine the astronomic

latitude and longitude of the landing site.

. Determine astronomic azimuths and zenith distance angles to

visible objects for establishing local, horizontal and vertical

control in vicinity of the LEM landing area.

Two types of metric camera systems are recommended to accom-

plish these observations: a panoramic camera to photograph survey

targets and lunar surface features against the star background; and a

precision frame camera capable of photographing the circumpolar star

field, the orbiting CSM against a star background, and the LEM from a

nearby station (for base line determination). These cameras are dis-

cussed in the following paragraphs and their general characteristics are

listed in Table I.

B. PANORAMIC CAMERA

The selection of the panoramic horizon camera as a basic instru-

ment follows from the decision to rely on photographic techniques for
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angle measurements because of the capability of recording a great

deal of information in one operation. The utmost simplicity of opera-

tion and the inclusion of stars, terrain, and survey targets, substan-

tially all around the horizon in a single exposure, as promised by the

panoramic camera, seem to afford maximum results with least effort.

There are two general types of panoramic cameras: direct

scanning cameras which employ rotating lenses, and those that scan by

means of rotating mirrors or prisms. There are also various mechani-

cal configurations, including some that require moving films which are

difficult to keep in perfect synchronization with the optical scanning

system.

Obviously an acceptable camera for surveying purposes must be

of high metric quality. An example of the optical design on which the

proposed camera is based may be found in an existing panoramic camera

developed by Photogrammetry, Inc. [1, 2] This particular camera

was designed for terrestrial surveys and has a rather high metric ac-

curacy (4. + 40 arc-seconds). It could be redesigned to include the

design features recommended in the following paragraphs.

The panoramic camera recommended for lunar use employs an

optical system designed around a horizontal fixed-focus lens with

mirrors above and below it which together fold the optical axis back

toward the field, permitting placement of both nodal points in a verti-

cal axis about which the entire optical system rotates. {See Figure 1. }

The film is stationary, held against a cylindrical film guide, and is

exposed through a scanning slit which moves past the focal plane as the

optical system rotates about the vertical axis of the camera. (See

Figure 2. )

A metric accuracy of 10 arc-seconds is desirable for the

selenodetic measurements and should be attainable with the proposed
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camera system. To satisfy this need, a quality lens of "_ 100 mm

focal length is recommended, together with the use of Kodak SO Z43

film which has high resolution and radiation resistance. These

components, operating without atmospheric effects, should deliver a

lens-film image spread of 5 microns or less [ 3 3, comparable with

a resolution of Z00 lines per ram. and a potential scalar accuracy

better than 10 arc-seconds. (One commonly used panoramic photo-

grammetric camera consistently produces a resolution of 100 lines

per mm. working through the atmosphere and exposing on SO 1213

film, which has lower resolution than SO Z4B [ 4 ].

The camera would be capable of providing 350 ° coverage of the

horizon, as indicated in Figure Z. Inability to photograph the com-

plete horizon is due to the requirement for entry and exit of film into

the focal plane. The field of view of the camera in the vertical direc-

tion provides Z5 ° coverage of the star field above the horizon and 5°

coverage below to contain the terrain.

The camera would use 70 mm. roll film and provide an exposure

format of 60 ram. x -_ 610 mm. as shown in Figure 3. A 50-foot roll

of film would provide over Z0 exposures, which would be sufficient for

the proposed photographic operations on the lunar surface.

Exposure time of the camera is governed by the width and speed

of the scanning slit, which must not be excessively wide since near its

edges exposed film areas are slightly out of the true focal plane because

of the cylindrical configuration. A 5 ° slit, having its edges Z-1/Z °

from the optical axis could probably be used without degrading the

image resolution perceptibly. Such a slit scanning at a rate to pro-

vide 0.25 second exposures would require 17.5 seconds for the full

350 ° scan of the camera.

A means of timing both beginning and end of the full scan is re-

quired to permit correction for fractional time intervals in the reduction
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of the stellar photographs. For this purpose a small time-piece such

as an Accutron watch should be installed in the camera for edge-

photographing at the beginning and end of the scan to constitute a

check not only on the real time of the exposure, but also its correct-

ness of scan time. (This device, however, would require referencing

to LEM real time. )

The cylindrical film guide must be dimensionally precise to hold

the film accurately in the cylindrical surface at the focal distance from

the axis of rotation of the optical system. To obtain the desired metric

accuracy, it is proposed that a reseau be placed in the focal plane of

the camera so that possible effects of film shrinkage and distortion can

be controlled and eliminated when the photography is reduced. The

reseau would register photographically but would not obscure image

detail. The reseau graduations should be etched tick marks about

Z mm. long, on the order of 5 microns wide, showing the intersection

points of an orthogonal grid (,_ I0 mm. spacing). The spacing of the

reseau intersection needs further consideration, and should be deter-

mined on the basis of the dimensional stability of the film, and the

optical-mechanical limitations in design and construction of the camera.

The reseau would be accurately calibrated before installation in the

camera; after installation the combined lens-reseau-film system would

be precisely calibrated.

Simultaneous photography of the stars and terrain would be

facilitated, despite the great range of exposure differences, by pro-

viding different slit widths for the star field and terrain portions of

the picture. (See Figure 3.) It should be possible to provide an ad-

justable terrain-exposure slit width, to be set by the operator in ac-

cordance with an exposure meter reading. It is probable, however,

that the slit can be preset in fixed width of opening in accordance with

photographic experience which could be gained prior to the mission.
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Partial atmospheric pressure must be maintained in the camera

to prevent loss of lubricants in moving parts and possible damage to

the film by outgassing or ablation, so the camera body must be com-

pletely sealed, with control levers entering through leakproof fittings.

Photographic viewing must be done through a window; in this case, an

optical system of high quality to prevent distortion. It will necessarily

have a slight lens effect, however, which will be compensated by an

auxiliary dome corrector lens installed near the principal lens. Since

an internal pressure of 0.5 atmosphere will suffice for the prevention

of damage, it is suggested that possibly the camera could leave earth

at atmospheric pressure, and the case be provided with a relief valve

permitting loss of pressurization gas down to the half-atmosphere

level when the camera enters vacuum environment. This may reduce

strength requirements and danger of possible distortions of the case

and the optical dome.

Design features of the proposed panoramic camera should also

include:

.

A barrel-shaped, epoxy-impregnated cast aluminum

housing, surmounted by the optical dome.

Z. External levers for motor winding and film advance,

shutter operation, scanning slit setting (if any).

. Large, easily manipulated foot screws for leveling, to

be placed on a platform or tripod as necessary.

. Edge photographic recording of exposure counter, clock

and level bubbles.

. External round bubble for approximate leveling and two 5"

per division level vials inside, arranged for edge photo-

graphy, and visible externally through periscope.
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o Scan motor, spring-driven and governer-controlled

wound by lever in single operation with film transport.

° Low-reflectance hard coating on all optical air-glass

interfaces.

. Magazine containing 50 feet of 70 ram. film, to pro-

vide over 20 exposures, one to a winding; preferably

pressure-sealed to permit return of film without camera,

with partial gas pressure and without damage.

° Design and construction to resist damage and calibration

errors due to the anticipated shocks and accelerations

of flight and landing.

10. Total estimated weight of 15 lbs.

The camera would be calibrated, loaded, and sealed on earth

prior to the start of a lunar mission. It is suggested that the loaded

camera, with its partially exposed film be returned to earth for extrac-

tion and measurement of the film; however, the film, fully wound into

the receiving spool, may be extracted for return without the camera,

provided it is stored for return in a sealed container at some degree

of gas pressure to prevent damage.

To operate the panoramic camera on the moon, the spring motor

is wound (and the film transported between exposures) by a single opera-

tion of an external lever. The lower scanning slit is adjusted to suit the

indications of an exposure meter (if provided); the camera is set on a

firm support, preferably on a platform on top of the LEM, although a

tripod on the ground may be used, if necessary; the instrument is

leveled as accurately as possible, using the external round bubble and
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subsequently the internal bubbles in conjunction with the leveling foot

screws; the astronaut moves to clear of the line-of-sight; and the

exposure lever is operated. The timing of star observations will

not be critical owing to the slow lunar rotation, and it is proposed

that the beginning (and possibly the end) of the scan be announced by

the astronaut for voice recording on the LEM time-referenced tape

record.

C. PRECISION FRAME CAMERA

A precision frame camera is proposed for the remaining opera-

tions of the selenodetic survey, i. e., circumpolar photography, photo-

graphy of the CSM against the star field, and photography of the LEM

to establish a short base line. While a high degree of metrical accuracy

is required for these operations, particularly for the circumpolar star

photos, no reference to the vertical or horizontal vectors are necessary;

hence, the camera will need no level vials, graduated circles or spindle

mountings.

The camera should be capable of providing a metrical accuracy

of 5 arc-seconds. To achieve this degree of accuracy a 6 inch (-_150 ram)

focal length, f/3, lens is required. The camera must be mechanically

rigid and contain an extremely flat focal plane.

The field of view should be about 40 °, which will require an image

format of -_ 110 mm square. Roll film in widths of lZ5 mm will satisfy

the format dimensions and 10 feet of film would permit about Z5 ex-

posures, which would be sufficient for selenodetic observations.

The camera will carry a bright frame view finder usable by the

astronaut for approximate pointing of the camera, and it will be mounted

on a light trunnion over a base suitable for setting on the LEM top plat-

form or a field tripod, so that the camera can be clamped in any desired

orientation.
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The precautions specified for the panoramic camera in respect

to pressurizing of the camera and film magazine, to shock resistance,

to heat precautions, and to low-reflectance coating of all air-glass

surfaces in the optical system, apply equally to the frame camera.

An essential output of the camera will be a shutter-actuated

signal to the LEM time-referenced magnetic tape record, whereby

the instant of beginning of any CSM photograph can be recorded. In

view of the high velocity of the CSM, about 1600 meters per second,

the resolution of the timing should be to . 01 second in order to

reduce the uncertainty in LEM position.

Since this camera will be used in an operation where terrain and

circumpolar stars will be photographed simultaneously, a dense focal

plane filter will be provided, movable by an external control into the

5 ° edge of the frame which will contain the terrain. This will pre-

vent gross over-exposure of the terrain portion of the picture. The

density of this filter should be predetermined, since adjustment on

the lunar surface would probably be difficult.

A focal plane reseau, similar to that proposed for the panoramic

camera, will be required to counter the effects of film shrinkage and

distortions that will result where the film is not properly held in the

true focal plane. Use of a reseau would not be required, however, if

photographic glass plates --optically flat to a few fringes of light--

could be used in place of film. If the number of exposures required for

the proposed selenodetic measurement is reduced to -_ 5, it should be

possible to use glass plates of about 4" x 5" size without adding ap-

preciably to the weight of the camera, which would also improve

accuracy of data reduction. Requirements for photographing the CSM

against the star background will utilize most of the exposures obtain-

able with a roll film camera; however, these observations could be

eliminated if the SET dual LOS photographic method in the CSM is

adapted. In that event, the minimum number of exposures needed
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with the frame camera reduces to 5-7, and use of glass plates should

seriously be considered. It would also eliminate the timing readout

and recording requirement previously mentioned.

General Comments. Although two different type cameras are

proposed for maximum capability and flexibility in performance of

the measurements, it would be possible to perform all the survey

operations with the precision frame camera. The horizontal photo-

graphy of near-horizon stars, terrain, and survey targets, would

then consist of a series of overlapping photographs encompassing

the horizon, as in conventional phototheodolite work. This approach

would require addition of the usual phototheodolite components to the

camera, including leveling screws, level vials to be edge photo-

graphed, a precision horizontal circle to be read and recorded to

relate the several photographs, and substantially more exacting

work on the part of the astronaut.

The significant trade-off consideration is weight. If weight

and volume of the two cameras can be carried, they would provide

the most capability with less work; if the weight cannot be carried,

the precision frame camera with phototheodolite components would

suffice.

D. STELLAR PHOTOGRAPHY REQUIREMENTS

Since the intended use of the two cameras will include stellar

photography, it is necessary to compute the estimated exposure re-

quirements for the photographic situations, which are:

1 - Circumpolar stars, using precision frame camera

Z - CSM against star field, using precision frame camera

3 - Lunar features and near-horizon stars, using panoramic

camera

E-9



A reasonable assumption is that 500 stars should be photographed

for situation I, 50 for situation 2, and 50 for situation 3. Assuming

random distribution of stars, and that in situations 1 and 3, 5° of the

camera field is occupied by terrain, the magnitude of the faintest stars

in the field of view can be estimated. The following table lists the

illuminance and total numbers of stars [ 5 ] .

Star magnitude

llluminan c e

meter -candles

(No atmospheric attenuation)

Number of stars in whole sky

0 2. 65 x 10 -6 3

-6
1 1.65x 10 Ii

2 4.21 x 10 -7 35

3 1.67 x 10 -7 101

-8
4 6. 66 x I0 Z89

-8
5 2. 65 x 10 1059

-8
6 1.06x 10 3056

7 4.21 x l0 -9 8416

8 1.67 x 10 -9 23216

Using this table, the magnitude of the faintest stars to be

photographed in each case is determined as follows:
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Star field in camera view

Star field as percentage of

whole sky

Number of stars required

Then the whole sky number
of stars must be

Faintest magnitude stars

to be photographed

Situation

1 Z 3

40 ° x 35 ° 40 ° x 40 ° Z5 ° x 350 °

3.4 3.9 21.2

500 50 50

15,000 1,300 240

8 6 4

Exposure time for photographing the faintest stars is determined using

the exposure equation [ 6 ] ;

D z

E = ? x (I'T't)

where

E : exposure, meter-candle-seconds

D = effective aperture, mm

d = image spread, mm

I = stellar illuminance, meter-candles

T = lens transmittance

t = shutter exposure time, seconds

The exposure value E, is computed for the three photographic situations

assuming exposure times of 5 sec. for circumpolar star photos, 0.5

sec. for CSM-star field photos, and 0. Z5 sec. for photos of near-

horizon stars:
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D

d

I

T

t

E

Log E

Situation

1 Z
(8th mag. ) (6th mag. ) (0 mag. )*

50 50 50

• 005 .005 .005

1.67" 10 -9 1.06" 10 -8 2.65" 10-

0.9 0.9 0.9

5.0 0.5 .003**

0.75 0.48 0.72

T. 88 T. 68 "i-. 86

3
(4th mag. )

a9

• 005

6.66" 10 -8

0.9

0.25

0.50

I-.70

_..t.

The CSM is assumed to be as bright as a

0 magnitude star.

Since the CSM will exhibit rapid image motion

on the film, the effective exposure time for the

CSM will be less than the camera shutter ex-

posure time (0.5) in case lB. Based on an

orbital height of 130 km and a velocity of

i. 6 km/sec, the CSM effective exposure time

will be:

Image Sizet = x Photo Scale Factor
csm Velocity

Substituting the orbit and camera data,

is found to be:

t
csm

t - (5 x l0 "6) x 130 x 103

csm 1.6x 103 0. 15
0.003 seconds

The above exposures should produce satisfactory density on

Kodak SO Z43 film, which has a usable range from log E = T. 50
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upward [ 7 ] . This film has the radiation-resistance necessary for

lunar work, as well as fine resolution in the order of ZOO + lines/mm.

In situations 1 and 3 the terrain will appear on the lower portion

of the photograph. To prevent extreme over-expose of the bright area,

a neutral density filter must be used to reduce the effective time of

this exposure to make it consistent with the exposure time for the stars

and CSM.
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TABLE I

Proposed Camera Characteristics For Surface

Selenodetic Measurements

I
I
I

Panoramic Camera Precision Frame Camera

Application

Lens

Focal Length

Aperture

Diaphram

Field of View

Shutter Speed

Image Format

Filter

To photograph: low alti-
tude stars; terrain; local

survey targets

To be selected

100 mm- fixed focus

f13.5

Variable to f/ZZ

30 ° vertical, set 25 ° above
and 5 ° below horizontal.

350 ° horizontal field of

view

Single moving slit, in two
widths to provide O. 2.5

second exposure above
horizon; O. 05 second (or

selected speed) for the
lunar terrain

60 mm x N 610 mm

Exposure control accom-

plished with focal plane

slit width (possibly photo-
chromic filter)

To photograph: circumpolar

stars; CSM against star field;
LEM for baseline determina-

tion

To be selected

150 mm - fixed focus

f/3
Variable to f/ZZ

40 ° x 40 °

Variable, O. I to I. 0 second

plus time exposure

110 mm x 110 mm

Neutral density, 0.5%
transmis sion, movable

into 5 ° strip of focal plane
to decrease terrain ex-

posure

Focal Plane Cylindrical Flat

Reseau Orthogonal grid, I0 mm. Orthogonal grid, I0 mm.
format format

Levels NoneRound bubble for rough

leveling. Two 5"/division
internal vials at 90 °
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TABLE I (Cont'd)

Proposed Camera Characteristics For Surface

Selenodetic Measurements

Panoramic Camera

Edge Data Exposure number, clock Exposure number and

and two level vials clock (optional)

Exposure Timing 1. 0 sec.

Precision Frame Camera

0.01 second time signal
recorded on LEM time-

referenced tape. (i.0

sec. by self-contained

clock optional)

Overall Metric 10 seconds 5 seconds

Accuracy

View Finder None Bright frame finder

Heat Shield Reflectorized exterior, Same

insulation in housing

Pressurization 0. 1 to 1.0 atmosphere Same

Weight (est.) 15 pounds 5 pounds

Volume (est.) 1500 cubic inches 500 cubic inches

Exposure Meter (optional) (optional)

I
I

I
I
I

I
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APPENDIX F

SURVEY TARGETS FOR USE ON THE LUNAR SURFACE

A. IN TRODUC TION

Proposed surface selenodetic operations outlined in this study require

use of ground survey targets within a local control scheme about the LEM

landing area. Precise relative location of the targets involves distance

ranging and photographic direction finding from the LEM site, and they

must therefore be detectable from the LEM as well as from orbiting photo-

graphic vehicles. Since for best utility in mapping control they should be

as far from the LEM as possible, it is preferable to photograph them from

the LEM top, where range of visibility will be about 5 km, rather than

from the ground, where range may be only Z. 5 krn.

B. TYPES OF TARGETS

Two types of photographic targets are considered, diffusely reflecting

and point source. The former must be of sufficient size, and must present

sufficient contrast against the lunar surface, to be detectable as shapes in

Orbiter photographs. With point source targets, the reflected light energy

must produce a detectable point image in the photographs. We consider

both types:

1. Diffusely Reflecting Targets

The size necessary can be computed. Assuming a lens-film resolution

of Z00 lines/ram. (which is exceptional but within the capability of a good

lens and Kodak SO 243 film [I] ), a high contrast target must be approxi-

mately 12 feet in least dimension to be resolved with a 3-inch focal length

lens from a height of 50 kna. This is at the threshold of resolution for the

planned Orbiter mapping camera, [2] hence a considerably larger size,

perhaps Z5 feet, would be prudent.
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Diffusely reflecting targets of such size have been found impracticable,

as noted below:

a) Rigid panels would be prohibitively heavy and bulky.

b) Powders or paint sprays applied to the lunar surface

seem impracticable because of the difficulty of covering the

irregular, jagged, and porous surface material hypothesized

from photometric studies.

c) Coated cloth or plastic materials for use as self-spreading

flat targets might be suitable, but it is unlikely that they could be

reliably installed at remote locations.

Moreover, any of the foregoing would require supplementary structures

in order to be observable from the LEM position.

2. Point Source Targets

Self-luminous light sources, such as searchlights and flares, re-

quire power sources which impose weight burdens. Fortunately, self-

luminous sources are not needed since reflected sunlight during the lunar

day can be utilized for point source targets.

Foil streamers of aluminum or other bright materials when draped over

a surface of any roughness could provide numerous glints of sunlight (con-

stituting not a single point source, but many such sources scattered over

an area). The problem of emplacing these materials at a remote distance

from the LEM would involve extremely difficult prediction of the probable

pattern spread and total effective reflectance. The streamers, like the

diffusely reflecting targets, would probably not be seen from the LEM.

Specular reflection of sunlight from plane mirrors would provide suf-

ficient light but could be used only in static pre-fixed configuration. This

suggests the use of spherical mirrors, which reflect in nearly all directions
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with little difference in luminance, as the most suitable means of providing

ground targets detectable in both surface and orbital photography.

In confirmation of the usefulness of such targets in aerial photography,

it is reported that the U. S. Coast and Geodetic Survey has successfully

photographed reflected sunlight from small garden-type crystal balls, and

from Volkswagen hub caps, at heights of several miles. Such targets were

small, whereas we propose larger reflectors (mylar balloons) for the

greater heights involved. Appropriate balloon size can be computed.

The image of the sun in a convex spherical mirror is small -- in effect

a point source, though of finite size. The image in a 5-foot radius sphere,

for example, has a diameter of about 0. Z8 inch (60" x sin i/Z the angle sub-

tended by the sun, or 16'). The luminance of this small image is that of

the sun reduced by the reflectance factor of the mirror surface, and it can

be seen and photographed at great distances against a low contrast back-

ground.

To determine the necessary size of a reflectorized spherical balloon

that would produce an adequate exposure on the film of an Orbiter camera,

we consider first the D-log E curve for Kodak SO Z43 film, finding that a

satisfactory exposure density is achieved for values of log E greater than

T. 5 (E = 0. 317 meter-candle-seconds). Applying the exposure equation

from [3],

Z
RxD !

t
MCS = 4.4 By HXKlf i

where we assume:

MCS

B

Y

D

(lowest usable E in m-c-s) = 0. 317

(solar disc luminance in c/m Z) = Z. 1 x 108 (no atmosphere

loss)

(reflectance of mirror in percent) = 70

(diameter of camera lens in inches) = 0.67
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R

H

Klf

t

(radius of mirror) (to be found)

(altitude of camera in feet) = 1.61 x 105 (50 km)

(lens-film image spread in microns) = 5

(exposure time in seconds) = O. OZ

Solving, R is found to be 58, 3 inches; so a 10-foot diameter balloon

appears adequate. It should be noted that the MCS value can be increased

by increasing the radius of the balloon (a square function); moreover, the

film response can be raised several orders of magnitude by selection of

faster emulsions (though at greater risk of radiation fogging [4] ).

C. EMPLACEMENT OF SELF-INFLATING BALLOONS

It is apparent that some type of ejection system will be required to em-

place the proposed target balloons at their desired locations. Launching

devices such as a compressed-gas gun or a spring-driven catapult could

possibly be designed for this purpose. The gas gun could be conveniently

charged from a compressed gas bottle whereas the spring launcher could

be cocked by a jack mechanism. The use of either type of launcher would

require some care and effort on the part of the astronaut in aiming the

launcher in the desired direction and in achieving the correct launch

elevation angle. A firm support for the launcher would be necessary to

obtain full effectiveness.

As a guide to the launcher design problem, we calculate the launch

energy required. For injecting the targets we use the equation for maxi-

mum range, corresponding to a launch elevation angle of 45o:

V = "_/ gm R

where:

V = launch velocity required at 45 ° elevation in feet/second

gm = acceleration of gravity at moon's surface, in feet/second Z

R = emplacement range, in feet (neglecting curvature)
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The launch energy in foot-pounds, is therefore:

Energy = 1/ZMv 2 = 1/2 M gm R

where M = mass of the projectile, in slugs.

The weight of the packaged balloon is taken to be one pound, in which

case the package has a mass of I/3Z slug. Using the above equation the

launch energy required for emplacment ranges of 2.5 km and 5 km is

found to be:

Launch Velocity

Energy

2.5km 5km

209 ft/sec. Z95 ft/sec.

688 ft-lbs. 1375 ft-lbs.

It seems possible to design a launcher within reasonable size and

weight to deliver these energies for boosting the targets.

D. CONCLUSION

Considering the importance of placing targets beyond the range of

astronaut travel, as well as weight and size limitations, ballistically era-

placed self-inflating mylar balloons are recommended. A 10-foot dia-

meter reflectorized balloon will give reasonable assurance of visibility

at 5 km distance from the LEM despite minor surface irregularities.

Moreover, such a balloon will produce reflected sunlight bright enough to

provide images in Orbiter photographs. It is estimated that such a target

can be packaged within a pound in weight, and that a self-opening package

and self-inflating device can be developed. Launching by a compressed

gas gun or a spring-driven catapult is suggested.

F-5



,

Zo

.

.

Refer ences

Kodak Panchromatic Negative Films for Aerial Photography,

Raife G. Tarkington, Photogrammetric Engineering, Dec. 1959.

Langley Research Center, Lunar Orbiter: Its Mission and Capability,

Taback, Paper, 10th Ann'l Meeting American Astronautical Soc.

Cornell Aeronautical Lab. Inc., Report VF-1478-P-1 Instrumentation

for Aerial Photographic Experiments, 1961 (Appendix C: Analysis
of Passive Point-Source Targets).

Eastman Kodak Co., Effective Characteristic Curves of Certain Gamma-

Ray-Fogged Aerial and Color Photographic Films, G. M. Corney,
1961.

F-6

I

I
I
I

I
I

I
I
I

I
I

I
I

I
I
I

I
I

I



I
I

I
I

I
I

I
I

I
I
I

I
I

I
I

I
I

I
I

APPENDIX G

COMPARATIVE EVALUATION OF LASER AND RADAR

FOR RANGING ON THE MOON

A. INTRODUC TION

The requirement is for an equipment to measure from a point on the sur-

face of the moon the distance to a semi-cooperative target, that is, one

having good reflectance and spherical shape, and also to a non-cooperative

object such as a mountain peak. The maximum distance to the semi-

cooperative object will be _ 5 km and to the non-cooperative one _ 30 kin.

Accuracy desired is about 1 part in 5,000 or 1 m at 5 km and 6m at 30 kin.

{In practical operation, the accuracy will be a fixed distance, not propor-

tional to the distance. )

Two techniques are available for this purpose -- radar and laser. The

requirements for the two conditions of semi-cooperative and cooperative

targets are very different, but, for the reasons outlined in the paragraphs

which follow, the laser appears superior to the radar for both types of

targets.

B. PRINCIPAL EQUIPMENT CHARACTERISTICS REQUIRED:

l. Low data rate. High data rate capability is not useful since

there will be substantial time intervals between measurements.

Z. Area illuminated must be small so that the distance measured

is associated with a specific and clearly definable area. This

is particularly important for the non-cooperative target.

. Frequency band width must be large to provide the required

range accuracy. Generally this is obtained with a sharp rise-

time of the transmitted pulse, or by a measurement of phase.

The latter can provide extremely high accuracy, but is appli-

cable only for point targets or targets of accurately known
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shape. The most reliable information will depend similarily

on the shortness of the pulse and, secondarily, on the sharp-

ness of the wave front for the non-cooperative targets.

4. Size must be small.

5. Weight must be small.

6. Prime power requirement must be small.

7. Installation and operation of the equipment must be very simple.

C. CHARACTERISTICS OF SEMI- AND NON-COOPERATIVE TARGETS

There is considerable difference in performance requirements of the

ranging equipment when ranging on the non-cooperative targets versus

the semi-cooperative targets not only because of the increased distance,

but also due to the reflecting area. The useful reflecting area for a non-

cooperative target is all the reflecting area contained within a range re-

solution element. At 30 km with an illumination beam area of ZZ5 sq. m,

the useful reflecting area of a rocky mountain top is likely to be only a

small percentage of the beam area, probably not more than 10%. With a

semi-cooperative target, however, consisting of a sphere 3 m in diameter,

for example, at a distance of 5 km almost exactly the full beam (6.5 milli-

radian beam width) will be incident symmetrically on the sphere to a maxi-

mum range depth of 1 m; so if the desired range resolution is 1 m, the

useful reflecting area will be equal to the full beam area. In this case,

even if a smaller range resolution is required, the full beam area can

be used by using a matched filter, matched to the known returning wave-

form.

The physical basis of the system limitation will also depend on the range.

In the absence of absorbing atmosphere, the limitation of the laser ranging

operation will be the noise of the system itself for the semi-cooperative

target for which the range is short. For the non-cooperative target at
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longer ranges, the limitation will probably be the ambient illumination of the

sun. A non-cooperative target at 30 km will probably require more than

l, 000 times as much power as that needed for a semi-cooperative target

at 5 krn; however, this is not prohibitive (see paragraph D. Z below).

D. COMPARISON OF LASER AND RADAR

Comparisons of each of the above principal system characteristics for a

radar and a laser are outlined below:

. The illuminated area will depend on the beam width. A ruby

laser has a beam width of about 0.5 milliradians; a semi-

conductor laser with appropriate collimating optics would

have about the same beam width. A Ku-band radar, which

would undoubtedly be used if a radar were selected, and

utilizing an inflated antenna, would have a beam width no

smaller than 5 milliradians. At 5 krn, the laser would
Z Z

illuminate an area of some 6 m and the radar 600 m

respectively. This difference alone would make the selec-

tion of the laser over the radar mandatory.

Zo Low data rate directs attention to low average power with

high concentration of energy. The laser technique of Q

switching fits this requirement. A ruby laser can provide

very short pulses with peaks of power in the megawatts,

the relatively large interval between pulses being used for

building up the energy for the next pulse. Such high peak

powers are obtainable with relatively small batteries. Semi-

conductor lasers are able to provide peak powers approaching

100 watts. These may prove satisfactory because of their

small size and high efficiency for semi-cooperative targets,

but not for the non-cooperative ones. Radar, on the other

hand, has as one of its valuable characteristics a high data

rate capability which is of little or no value for the present

application.
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. Power requirement depends on the efficiency and duty factor.

Item 2 above shows that the duty factor can be very low, such

as 20 nanoseconds in 10 or 15 seconds, or Z x 10 .7 . The ef-

ficiency of a ruby laser is low, yet the short duty cycle means

that it would require little average power, say a few watts for

the distant target. A few watts to feed the laser and all associ-

ated circuits should be ample, even for the non-cooperative tar-

get. The semi-conductor laser also requires extremely low

average power. A low power Ku radar using a 50 milliwatt

ldystron has an efficiency of about 5%. The total power for

this equipment would therefore be only a few watts.

. The frequency band of both the laser and the radar is large.

Laser pulses can be made as short as 20 nanoseconds, cor-

responding to a ranging distance of 3 m, with a rise time of

a few nanoseconds. With a Ku radar, band widths of 1 gc can

be obtained. In this respect the laser and the radars are of

similar capability. Resolution capability, however, is not

entirely dependent on the frequency band, since the targets

are not point-sources. The received pulse will be the result

of reflections at various distances and will appear smeared.

With a suitable target, the front edge of the return pulse,

corresponding to reflection at the nearest surface of the

target, can be measured with an accuracy possibly as good

as 0. 1 to 0.2 of the pulse length. If, however, the nearest

reflecting area (one range resolution deep) is small, there

may be appreciable loss of accuracy. With the semi-

cooperative target it should be possible to obtain reliably

an accuracy of the order of 30 cm if necessary. With non-

cooperative targets some experience and training may be

desirable to select the target or the portion of a target

which will provide the greatest accuracy.

e The size and weight of the laser will involve a trade-off be-

tween the size of the receiving aperture and the power. The
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laser design will depend on whether its operation is limited

to the semi-cooperative targets or extended to non-coopera-

tive targets.

In a radar the antenna would be by far the largest component,

possibly an inflated paraboloid 3 m in diameter. A larger

antenna would provide little gain because of the decreasing

accuracy of the surface as the size increases. The weight

of a Ku band radar, not including antenna and power supply,

is about 10 lbs. The total weight would probably be between

20 lbs. and 30 lbs. including 5 lbs. for the antenna and its

supporting stand and 15 lbs. for the rest of the equipment.

. The operation of the ranging equipment can be made very

simple. In this respect there would be little difference be-

tween the laser and the radar. In either case a telescope

would be used to line up the equipment with the target and

the range measurement made as with a regular radar. In

the case of the laser, the source optical system can be used

for the laser and the telescope.

In summary, the principal and dominant advantage of the laser is its

narrow beam width. It also has a slight advantage in weight, possibly also

in power, it has considerable advantage in size, because the radar re-

quires a large antenna, although this unit is small until it is inflated. In

resolution, and ease of operation the laser and the radar are about the

same. An accuracy of about 30 cm can be expected with semi-coopera-

tire target and probably about 1 m with non-cooperative target with both

laser and radar.

The design of the equipment for the semi-cooperative target can be

based on the work now in progress at the Lincoln Laboratories. At this

stage it is understood that a range of 2 krn has been obtained with equip-

ment, not including batteries, contained in one-eighth of a cubic foot

using a semi-conductor laser. It can reasonably be expected that a
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range of 5 krn will be reached with a semi-cooperative target. Total

weight may be as low as i0 or 15 Ibs.

For the non-cooperative target, a solid state laser such as a ruby

laser will probably be necessary. This unit will be considerably larger.

Estimates of probable weight and size are not considered sufficiently

reliable to refer to. Actual equipment approaching the requirements

have been relatively heavy, well over 40 Ibs. Projection would lead to

an expectation realistically of 30 or 35 ibs. and optimistically of 20 ibs.
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